Yan Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1751133/publications.pdf

Version: 2024-02-01

567281 501196 45 830 15 28 citations h-index g-index papers 45 45 45 1527 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Study of Surface Plasmon in Au/Ag Core/Shell Compound Nanoparticles. Plasmonics, 2012, 7, 509-513.	3.4	83
2	Investigation of the Microstructures of Graphene Quantum Dots (GQDs) by Surface-Enhanced Raman Spectroscopy. Nanomaterials, 2018, 8, 864.	4.1	83
3	Intense, stable and excitation wavelength-independent photoluminescence emission in the blue-violet region from phosphorene quantum dots. Scientific Reports, 2016, 6, 27307.	3.3	81
4	Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas. ACS Nano, 2016, 10, 1580-1588.	14.6	74
5	Tunable surface plasma resonance frequency in Ag core/Au shell nanoparticles system prepared by laser ablation. Applied Physics Letters, 2008, 92, .	3.3	62
6	Reversible Defect in Graphene Investigated by Tip-Enhanced Raman Spectroscopy. Plasmonics, 2012, 7, 555-561.	3.4	40
7	Doublet of D and 2D bands in graphene deposited with Ag nanoparticles by surface enhanced Raman spectroscopy. Carbon, 2013, 65, 359-364.	10.3	34
8	Speckled SiO2@Au Core–Shell Particles as Surface Enhanced Raman Scattering Probes. Plasmonics, 2013, 8, 185-191.	3.4	33
9	Adsorption Behaviors of 4-Mercaptobenzoic Acid on Silver and Gold Films. Chinese Journal of Chemical Physics, 2010, 23, 659-663.	1.3	30
10	Nanoparticle-based crystal growth via multistep self-assembly. CrystEngComm, 2013, 15, 5114.	2.6	25
11	The Suitable Condition of Using LSPR Model in SERS: LSPR Effect Versus Chemical Effect on Microparticles Surface-Modified with Nanostructures. Plasmonics, 2017, 12, 77-81.	3.4	23
12	1-Hexadecylamine as both reducing agent and stabilizer to synthesize Au and Ag nanoparticles and their SERS application. Journal of Nanoparticle Research, 2011, 13, 1929-1936.	1.9	22
13	From gold nanorods to nanodumbbells: a different way to tailor surface plasmon resonances by a chemical route. Journal of Materials Chemistry, 2012, 22, 24006.	6.7	22
14	Experimental (FT-IR) and theoretical (DFT) studies on the adsorption behavior of p-nitroaniline (PNA) on gold nanoparticales. Journal of Nanoparticle Research, 2006, 8, 761-767.	1.9	17
15	Investigation on tip enhanced Raman spectra of graphene. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 190, 378-382.	3.9	17
16	Photoluminescence mechanism of phosphorene quantum dots (PQDs) produced by pulsed laser ablation in liquids. Applied Physics Letters, 2019, 115, .	3.3	16
17	Surface-Nanostructured Single Silver Nanowire: A New One-Dimensional Microscale Surface-Enhanced Raman Scattering Interface. Langmuir, 2018, 34, 15160-15165.	3.5	15
18	Optical Properties of Noncontinuous Gold Shell Engineered on Silica Mesosphere. Plasmonics, 2014, 9, 121-127.	3.4	12

#	Article	IF	Citations
19	Piperidine adsorption on two different silver electrodes: A combined surface enhanced Raman spectroscopy and density functional theory study. Journal of Nanoparticle Research, 2007, 9, 817-824.	1.9	11
20	Direct visual evidence for chemical mechanism of SERRS of the S-complex of pyrimidine molecule adsorbed on silver nanoparticle via charge transfer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 430-435.	3.9	11
21	Tailoring of Localized Surface Plasmon Resonances of Core-Shell Au@Ag Nanorods by Changing the Thickness of Ag Shell. Plasmonics, 2016, 11, 1511-1517.	3.4	11
22	Raman excitation of (+) $\hat{a} \in (\langle i \rangle R \langle i \rangle) \hat{a} \in methyloxirane$ and its origin of optical activity via bond polarizabilities. Journal of Raman Spectroscopy, 2011, 42, 186-191.	2.5	9
23	Investigate on plasma catalytic reaction of 4-nitrobenzenethiol on Ag@SiO2Core-Shell substrate via Surface-enhanced Raman scattering. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 237, 118362.	3.9	9
24	Plasmon-driven photocatalytic properties based on the surface of gold nanostar particles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120240.	3.9	9
25	Photoreduction of Silver Salts Using Au Nanoparticles to Form a Core-Shell-Type Nanostructure: Insight into the Reaction Mechanism. Plasmonics, 2014, 9, 945-949.	3.4	8
26	Investigation of Tip-Enhanced Raman Spectroscopy on a Silver Nanohole Array Substrate. Plasmonics, 2017, 12, 1861-1867.	3.4	8
27	Double-emission mechanism of laser-induced HOPG-exfoliated Graphene Quantum Dots (GQDs). Applied Physics Letters, 2019, 114, .	3.3	8
28	Graphene-coupled nanowire hybrid plasmonic gap mode–driven catalytic reaction revealed by surface-enhanced Raman scattering. Nanophotonics, 2020, 9, 4519-4527.	6.0	8
29	Investigation of surface-enhanced Raman spectroscopy on the substrates of telluride 2D material. European Physical Journal Plus, 2020, 135, 1.	2.6	7
30	Resonance Photoluminescence Enhancement of Monolayer MoS ₂ via a Plasmonic Nanowire Dimer Optical Antenna. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23756-23764.	8.0	7
31	A stable  sandwich' system of Surfaceâ€Enhanced Resonance Raman Scattering for the analysis of βâ€carotenes in a photosynthetic pigmentâ€protein complex. Journal of Raman Spectroscopy, 2013, 44, 1111-1119.	2.5	5
32	The Surface-Enhanced Raman Spectroscopy of Graphene Deposited by Silver Nanoparticle Islands. Integrated Ferroelectrics, 2013, 147, 90-96.	0.7	4
33	Surface-enhanced resonance Raman scattering of MoS2 quantum dots by coating Ag@MQDs on silver electrode with nanoscale roughness. Journal of Luminescence, 2021, 230, 117704.	3.1	4
34	Investigation of photocatalysis reactions on the single-crystal and polycrystalline graphenes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 251, 119441.	3.9	4
35	The Tunable and Well-Controlled Surface Plasmon Resonances of Au Hollow Nanostructures by a Chemical Route. Plasmonics, 2018, 13, 47-53.	3.4	3
36	Study of black phosphorus quantum dot modified SnO2-based perovskite solar cells. Applied Physics Letters, 2022, 120, .	3.3	3

#	Article	IF	Citations
37	Strong coupling with directional scattering features of metal nanoshells with monolayer WS2 heterostructures. Applied Physics Letters, 2022, 121, .	3.3	3
38	PHONON DISPERSION IN CHIRAL SINGLE-WALL CARBON NANOTUBES. Modern Physics Letters B, 2007, 21, 1667-1676.	1.9	2
39	Synthesis of SERS active Au nanowires in different noncoordinating solvents. Journal of Nanoparticle Research, 2011, 13, 2625-2632.	1.9	2
40	Intramolecular enantiomerism as revealed from Raman optical activity spectrum. Journal of Raman Spectroscopy, 2015, 46, 1303-1309.	2.5	2
41	Epitaxial growth of one-dimensional different-diameter silver nanowires. New Journal of Chemistry, 2021, 45, 21577-21581.	2.8	2
42	The smart growth of self-assembled silver nanoloops. Nanotechnology, 2021, 32, 465604.	2.6	1
43	One New Method of Achieving Raman Resonance of SWCNTs. , 2010, , .		0
44	Temporal Electronic Structure Of The Nonresonant Raman Excited Virtual State Of $(+)$ -(R)-Methyloxirane By 514 nm Excitation Via Bond Polarizabilities., 2010,,.		0
45	The effect of temperature on the resonance of the interband transition energy in single-walled carbon nanotubes with excitation laser energy by Raman spectroscopy. Applied Physics Letters, 2013, 103, 231902.	3.3	0