Roberto Gherzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1750889/publications.pdf

Version: 2024-02-01

80 papers 5,222 citations

36 h-index 71 g-index

81 all docs

81 docs citations

81 times ranked 5568 citing authors

#	Article	IF	CITATIONS
1	LINC00152 expression in normal and Chronic Lymphocytic Leukemia B cells. Hematological Oncology, 2022, 40, 41-48.	1.7	5
2	LncRNA <i>EPR</i> -induced METTL7A1 modulates target gene translation. Nucleic Acids Research, 2022, 50, 7608-7622.	14.5	6
3	Comprehensive multi-omics analysis uncovers a group of TGF-Î ² -regulated genes among lncRNA EPR direct transcriptional targets. Nucleic Acids Research, 2020, 48, 9053-9066.	14.5	15
4	Long Non-Coding RNA-Ribonucleoprotein Networks in the Post-Transcriptional Control of Gene Expression. Non-coding RNA, 2020, 6, 40.	2.6	25
5	LncRNA EPR controls epithelial proliferation by coordinating Cdkn1a transcription and mRNA decay response to TGF- \hat{l}^2 . Nature Communications, 2019, 10, 1969.	12.8	68
6	Resveratrol limits epithelial to mesenchymal transition through modulation of KHSRP/hnRNPA1-dependent alternative splicing in mammary gland cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 291-298.	1.9	15
7	miRNA-Mediated KHSRP Silencing Rewires Distinct Post-transcriptional Programs during TGF-Î ² -Induced Epithelial-to-Mesenchymal Transition. Cell Reports, 2016, 16, 967-978.	6.4	45
8	Diverse roles of the nucleic acidâ€binding protein <scp>KHSRP</scp> in cell differentiation and disease. Wiley Interdisciplinary Reviews RNA, 2016, 7, 227-240.	6.4	57
9	H19 long noncoding RNA controls the mRNA decay promoting function of KSRP. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5023-8.	7.1	104
10	KSRP and MicroRNA 145 Are Negative Regulators of Lipolysis in White Adipose Tissue. Molecular and Cellular Biology, 2014, 34, 2339-2349.	2.3	42
11	KSRP Ablation Enhances Brown Fat Gene Program in White Adipose Tissue Through Reduced miR-150 Expression. Diabetes, 2014, 63, 2949-2961.	0.6	42
12	Destabilization of nucleophosmin mRNA by the HuR/KSRP complex is required for muscle fibre formation. Nature Communications, 2014, 5, 4190.	12.8	56
13	KSRP Controls Pleiotropic Cellular Functions. Seminars in Cell and Developmental Biology, 2014, 34, 2-8.	5.0	36
14	Functional and molecular insights into KSRP function in mRNA decay. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 689-694.	1.9	54
15	KSRP silencing favors neural differentiation of P19 teratocarcinoma cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 469-479.	1.9	8
16	Let-7b/c Enhance the Stability of a Tissue-Specific mRNA during Mammalian Organogenesis as Part of a Feedback Loop Involving KSRP. PLoS Genetics, 2012, 8, e1002823.	3.5	22
17	PI3K/AKT signaling determines a dynamic switch between distinct KSRP functions favoring skeletal myogenesis. Cell Death and Differentiation, 2012, 19, 478-487.	11.2	66
18	KH domains with impaired nucleic acid binding as a tool for functional analysis. Nucleic Acids Research, 2012, 40, 6873-6886.	14.5	106

#	Article	IF	Citations
19	Noncanonical G recognition mediates KSRP regulation of let-7 biogenesis. Nature Structural and Molecular Biology, 2012, 19, 1282-1286.	8.2	39
20	Bone Morphogenetic Protein/SMAD Signaling Orients Cell Fate Decision by Impairing KSRP-Dependent MicroRNA Maturation. Cell Reports, 2012, 2, 1159-1168.	6.4	22
21	Posttranscriptional Control of Type I Interferon Genes by KSRP in the Innate Immune Response against Viral Infection. Molecular and Cellular Biology, 2011, 31, 3196-3207.	2.3	74
22	KSRP, many functions for a single protein. Frontiers in Bioscience - Landmark, 2011, 16, 1787.	3.0	49
23	The role of KSRP in mRNA decay and microRNA precursor maturation. Wiley Interdisciplinary Reviews RNA, 2010, 1, 230-239.	6.4	56
24	KSRP Promotes the Maturation of a Group of miRNA Precuresors. Advances in Experimental Medicine and Biology, 2010, 700, 36-42.	1.6	20
25	Akt2-mediated phosphorylation of Pitx2 controls Ccnd1 mRNA decay during muscle cell differentiation. Cell Death and Differentiation, 2010, 17, 975-983.	11.2	35
26	Orientation of the central domains of KSRP and its implications for the interaction with the RNA targets. Nucleic Acids Research, 2010, 38, 5193-5205.	14.5	31
27	KSRP promotes the maturation of a group of miRNA precursors. Advances in Experimental Medicine and Biology, 2010, 700, 36-42.	1.6	11
28	How to control miRNA maturation? Co-activators and co-repressors take the stage. RNA Biology, 2009, 6, 536-540.	3.1	40
29	LPS induces KHâ€type splicing regulatory proteinâ€dependent processing of microRNAâ€155 precursors in macrophages. FASEB Journal, 2009, 23, 2898-2908.	0.5	188
30	KSRP-PMR1-exosome association determines parathyroid hormone mRNA levels and stability in transfected cells. BMC Cell Biology, 2009, 10, 70.	3.0	25
31	The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature, 2009, 459, 1010-1014.	27.8	588
32	Phosphorylation-mediated unfolding of a KH domain regulates KSRP localization via 14-3-3 binding. Nature Structural and Molecular Biology, 2009, 16, 238-246.	8.2	88
33	The mRNA decay promoting factor Kâ€homology splicing regulator protein postâ€transcriptionally determines parathyroid hormone mRNA levels. FASEB Journal, 2008, 22, 3458-3468.	0.5	60
34	Stabilization of Cellular mRNAs and Up-Regulation of Proteins by Oligoribonucleotides Homologous to the Bcl2 Adenine-Uridine Rich Element Motif. Molecular Pharmacology, 2007, 71, 531-538.	2.3	7
35	Identification of a set of KSRP target transcripts upregulated by PI3K-AKT signaling. BMC Molecular Biology, 2007, 8, 28.	3.0	53
36	The Structure of the C-Terminal KH Domains of KSRP Reveals a Noncanonical Motif Important for mRNA Degradation. Structure, 2007, 15, 485-498.	3.3	97

#	Article	IF	CITATIONS
37	The RNA-Binding Protein KSRP Promotes Decay of \hat{l}^2 -Catenin mRNA and Is Inactivated by PI3K-AKT Signaling. PLoS Biology, 2006, 5, e5.	5.6	132
38	Tethering KSRP, a Decay-Promoting AU-Rich Element-Binding Protein, to mRNAs Elicits mRNA Decay. Molecular and Cellular Biology, 2006, 26, 3695-3706.	2.3	111
39	p38-Dependent Phosphorylation of the mRNA Decay-Promoting Factor KSRP Controls the Stability of Select Myogenic Transcripts. Molecular Cell, 2005, 20, 891-903.	9.7	212
40	The ARE-dependent mRNA-destabilizing activity of BRF1 is regulated by protein kinase B. EMBO Journal, 2004, 23, 4760-4769.	7.8	132
41	A KH Domain RNA Binding Protein, KSRP, Promotes ARE-Directed mRNA Turnover by Recruiting the Degradation Machinery. Molecular Cell, 2004, 14, 571-583.	9.7	390
42	The Wnt/Î ² -Cateninâ†'Pitx2 Pathway Controls the Turnover of Pitx2 and Other Unstable mRNAs. Molecular Cell, 2003, 12, 1201-1211.	9.7	156
43	Bcl-2 Protein Is Required for the Adenine/Uridine-rich Element (ARE)-dependent Degradation of Its Own Messenger. Journal of Biological Chemistry, 2003, 278, 23451-23459.	3.4	14
44	AU Binding Proteins Recruit the Exosome to Degrade ARE-Containing mRNAs. Cell, 2001, 107, 451-464.	28.9	803
45	Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes and Development, 2000, 14, 1236-1248.	5.9	314
46	Altered response to stimuli of the AP-1/DNA binding activity in a syndrome of precocious ageing (geroderma osteodysplastica hereditaria). Mechanisms of Ageing and Development, 1998, 100, 169-175.	4.6	3
47	Structure of 5′ Region of Human <i>Tenascin-R</i> Gene and Characterization of Its Promoter. DNA and Cell Biology, 1998, 17, 275-282.	1.9	10
48	Rat tenascin-R gene: structure, chromosome location and transcriptional activity of promoter and exon 1. Cytogenetic and Genome Research, 1998, 83, 115-123.	1.1	11
49	The c-Jun-Induced Transformation Process Involves Complex Regulation of Tenascin-C Expressionâ€. Molecular and Cellular Biology, 1997, 17, 3202-3209.	2.3	66
50	The Human Homeodomain Protein OTX2 Binds to the Human Tenascin-C Promoter and Trans-Represses Its Activity in Transfected Cells. DNA and Cell Biology, 1997, 16, 559-567.	1.9	33
51	Assignment of the tenascin-R gene (<i>Tnr</i>) to mouse chromosome 4 band E2 by fluorescence in situ hybridization; refinement of the human TNR location to chromosome 1q24. Cytogenetic and Genome Research, 1997, 78, 145-146.	1.1	7
52	The Human Tenascin-R Gene. Journal of Biological Chemistry, 1996, 271, 31251-31254.	3.4	10
53	Human Tenascin Gene. Journal of Biological Chemistry, 1995, 270, 3429-3434.	3.4	52
54	Regulation of Islet Hormone Gene Expression by Incretin Hormones. Experimental and Clinical Endocrinology and Diabetes, 1995, 103, 56-65.	1.2	12

#	Article	IF	Citations
55	The Glucagon Gene Is Transcribed in \hat{I}^2 -like Pancreatic Cells. Experimental Cell Research, 1995, 218, 460-468.	2.6	6
56	The first untranslated exon of the human tenascin-C gene plays a regulatory role in gene transcription. FEBS Letters, 1995, 369, 335-339.	2.8	11
57	Expression, Intracellular Localization, and Gene Transcription Regulation of the Secretory Protein 7B2 in Endocrine Pancreatic Cell Lines and Human Insulinomas. Experimental Cell Research, 1994, 213, 20-27.	2.6	12
58	Ras antagonizes cAMP stimulated glucagon gene transcription in pancreatic islet cell lines. FEBS Letters, 1994, 353, 277-280.	2.8	4
59	AP-1 Activity during Normal Human Keratinocyte Differentiation: Evidence for a Cytosolic Modulator of AP-1/DNA Binding. Experimental Cell Research, 1993, 204, 136-146.	2.6	44
60	Androgens increase insulin receptor mRNA levels, insulin binding, and insulin responsiveness in HEp-2 larynx carcinoma cells. Molecular and Cellular Endocrinology, 1992, 86, 111-118.	3.2	19
61	Protein kinase C mRNA levels and activity in reconstituted normal human epidermis: Relationships to cell differentiation. Biochemical and Biophysical Research Communications, 1992, 184, 283-291.	2.1	41
62	"HepG2/erythroid/brain―type glucose transporter (GLUT1) is highly expressed in human epidermis: Keratinocyte differentiation affects glut1 levels in reconstituted epidermis. Journal of Cellular Physiology, 1992, 150, 463-474.	4.1	44
63	Insulin receptor gene expression is reduced in cells from a progeric patient. Molecular and Cellular Endocrinology, 1991, 75, 9-14.	3.2	6
64	High expression levels of the "erythroid/brain―type glucose transporter (GLUT1) in the basal cells of human eye conjunctiva and oral mucosa reconstituted in culture. Experimental Cell Research, 1991, 195, 230-236.	2.6	30
65	Effect of metformin treatment on insulin action in diabetic rats: In vivo and in vitro correlations. Metabolism: Clinical and Experimental, 1990, 39, 425-435.	3.4	104
66	Glucose starvation and glycosylation inhibitors reduce insulin receptor gene expression: Characterization and potential mechanism in human cells. Biochemical and Biophysical Research Communications, 1990, 169, 397-405.	2.1	26
67	Multifactorial control of insulin receptor gene expression in human cell lines. Biochemical and Biophysical Research Communications, 1990, 170, 1184-1190.	2.1	8
68	Antipeptide antibodies toward the extracellular domain of insulin receptor beta-subunit. Biochemical and Biophysical Research Communications, 1989, 162, 1236-1243.	2.1	4
69	Effect of two different glucose concentrations on insulin receptor mRNA levels in human hepatoma HepG2 cells. Biochemical and Biophysical Research Communications, 1989, 160, 1415-1420.	2.1	20
70	c-myc Gene expression in human cells is controlled by glucose. Biochemical and Biophysical Research Communications, 1989, 165, 1123-1129.	2.1	19
71	Direct modulation of insulin receptor protein tyrosine kinase by vanadate and anti-insulin receptor monoclonal antibodies. Biochemical and Biophysical Research Communications, 1988, 152, 1474-1480.	2.1	45
72	Species Specificity of Insulin Binding and Insulin Receptor Protein Tyrosine Kinase Activity*. Endocrinology, 1987, 121, 2007-2010.	2.8	7

#	Article	IF	CITATIONS
73	Regulation of insulin receptor-associated tyrosine kinase by a polyclonal IgG. Molecular and Cellular Endocrinology, 1987, 53, 9-14.	3.2	5
74	Insulin receptor autophosphorylation and kinase activity in streptozotocin diabetic rats. Effect of a short fast. Biochemical and Biophysical Research Communications, 1986, 140, 850-856.	2.1	16
75	Insulin-like growth factor I (IGF I) receptor autophosphorylation and kinase activity. effect of a human polyclonal-antibody (plgG). Biochemical and Biophysical Research Communications, 1986, 138, 1023-1029.	2.1	2
76	Effect of insulin receptor autophosphorylation on insulin receptor binding. Molecular and Cellular Endocrinology, 1986, 45, 247-252.	3.2	7
77	Influence of Cell Age and Ketoaminic Linkage on Rapid Glycosylation of Hemoglobin in Human Red Cells In Vitro. Hormone and Metabolic Research, 1985, 17, 201-204.	1.5	2
78	Insulin Receptor Regulation in Human Mature Red Cells in vitro. Hormone Research, 1985, 22, 270-275.	1.8	4
79	Inhibition of insulin and epidermal growth factor (EGF) receptor autophosphorylation by a human polyclonal IgG. Biochemical and Biophysical Research Communications, 1985, 132, 991-1000.	2.1	10
80	Insulin Binding on MOLT 4 Cells: Effect of a Sulfonylurea. Hormone Research, 1984, 20, 246-251.	1.8	3