Isabel Duarte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1750642/publications.pdf

Version: 2024-02-01

279798 243625 2,063 54 23 44 citations h-index g-index papers 54 54 54 1013 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Organic acid cross-linked 3D printed cellulose nanocomposite bioscaffolds with controlled porosity, mechanical strength, and biocompatibility. IScience, 2022, 25, 104263.	4.1	12
2	Casting A356+SiCp with ultrasonically treated melts. , 2022, 1, 15-19.		O
3	The Influence of Precipitation Hardening on the Damping Capacity in Al–Si–Mg Cast Components at Different Strain Amplitudes. Metals, 2022, 12, 804.	2.3	1
4	Dynamic penetration of cellular solids: Experimental investigation using Hopkinson bar and computed tomography. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 800, 140096.	5.6	22
5	Aluminium Alloy Foam Modelling and Prediction of Elastic Properties Using X-ray Microcomputed Tomography. Metals, 2021, 11, 925.	2.3	10
6	3D-printed multisampling holder for microcomputed tomography applied to life and materials science research. Micron, 2021, 150, 103142.	2.2	4
7	Bacterial cellulose/graphene oxide aerogels with enhanced dimensional and thermal stability. Carbohydrate Polymers, 2020, 230, 115598.	10.2	50
8	Bending performance evaluation of aluminium alloy tubes filled with different cellular metal cores. Composite Structures, 2020, 234, 111748.	5.8	49
9	Cellular Metals: Fabrication, Properties and Applications. Metals, 2020, 10, 1545.	2.3	1
10	Hybrid Structures Made of Polyurethane/Graphene Nanocomposite Foams Embedded within Aluminum Open-Cell Foam. Metals, 2020, 10, 768.	2.3	22
11	Brief Review on Experimental and Computational Techniques for Characterization of Cellular Metals. Metals, 2020, 10, 726.	2.3	11
12	Multifunctional hybrid structures made of open-cell aluminum foam impregnated with cellulose/graphene nanocomposites. Carbohydrate Polymers, 2020, 238, 116197.	10.2	26
13	Characterization and physical properties of aluminium foam–polydimethylsiloxane nanocomposite hybrid structures. Composite Structures, 2019, 230, 111521.	5.8	22
14	Automated Continuous Production Line of Parts Made of Metallic Foams. Metals, 2019, 9, 531.	2.3	28
15	Low cycle fatigue behaviour of closed-cell aluminium foam. Mechanics of Materials, 2019, 133, 165-173.	3.2	11
16	Axial crush performance of polymer-aluminium alloy hybrid foam filled tubes. Thin-Walled Structures, 2019, 138, 124-136.	5.3	69
17	Mechanical, Thermal, and Acoustic Properties of Aluminum Foams Impregnated with Epoxy/Graphene Oxide Nanocomposites. Metals, 2019, 9, 1214.	2.3	12
18	Compressive Behaviour of Closed-Cell Aluminium Foam at Different Strain Rates. Materials, 2019, 12, 4108.	2.9	28

#	Article	IF	Citations
19	Axial crush behaviour of the aluminium alloy in-situ foam filled tubes with very low wall thickness. Composite Structures, 2018, 192, 184-192.	5.8	64
20	Crush performance of multifunctional hybrid foams based on an aluminium alloy open-cell foam skeleton. Polymer Testing, 2018, 67, 246-256.	4.8	50
21	Detailed Analysis of Closed ell Aluminum Alloy Foam Internal Structure Changes during Compressive Deformation. Advanced Engineering Materials, 2018, 20, 1800164.	3.5	15
22	Special Issue on Cellular Materials. Science and Technology of Materials, 2018, 30, 1-3.	0.8	16
23	Modelling and effective properties prediction of metal foams. Science and Technology of Materials, 2018, 30, 43-49.	0.8	5
24	The detection of plastic flow propagation based on the temperature gradient. Materials Today: Proceedings, 2017, 4, 5925-5930.	1.8	6
25	Crush performance of foam filled tubular structures made of aluminium alloys at different loading conditions. International Journal of Automotive Composites, 2017, 3, 127.	0.1	0
26	Composite and Nanocomposite Metal Foams. Materials, 2016, 9, 79.	2.9	102
27	Dynamic compressive behaviour of aluminium foams fabricated from rejected precursor materials. Ciência & Tecnologia Dos Materiais, 2016, 28, 19-22.	0.5	3
28	A new class of closed-cell aluminium foams reinforced with carbon nanotubes. Ciência & Tecnologia Dos Materiais, 2016, 28, 5-8.	0.5	5
29	Compressive behaviour of unconstrained and constrained integral-skin closed-cell aluminium foam. Composite Structures, 2016, 154, 231-238.	5.8	55
30	Infrared Thermography as a Method for Energy Absorption Evaluation of Metal Foams. Materials Today: Proceedings, 2016, 3, 1025-1030.	1.8	24
31	Analysis of performance of in-situ carbon steel bar reinforced Al-alloy foams. Composite Structures, 2016, 152, 432-443.	5.8	17
32	Static and dynamic axial crush performance of in-situ foam-filled tubes. Composite Structures, 2015, 124, 128-139.	5.8	126
33	A novel approach to prepare aluminium-alloy foams reinforced by carbon-nanotubes. Materials Letters, 2015, 160, 162-166.	2.6	56
34	An effective approach to reinforced closed-cell Al-alloy foams with multiwalled carbon nanotubes. Carbon, 2015, 95, 589-600.	10.3	53
35	Compressive performance evaluation of APM (Advanced Pore Morphology) foam filled tubes. Composite Structures, 2015, 134, 409-420.	5.8	48
36	Characterisation of aluminium alloy tubes filled with aluminium alloy integral-skin foam under axial compressive loads. Composite Structures, 2015, 121, 154-162.	5.8	78

#	Article	IF	Citations
37	Manufacturing and bending behaviour of in situ foam-filled aluminium alloy tubes. Materials & Design, 2015, 66, 532-544.	5.1	97
38	2 <scp>D</scp> Quantitative Analysis of Metal Foaming Kinetics by Hotâ€ <scp>S</scp> tage Microscopy. Advanced Engineering Materials, 2014, 16, 33-39.	3.5	18
39	Variation of quasi-static and dynamic compressive properties in a single aluminium foam block. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 616, 171-182.	5.6	54
40	Variation of Quasi-static and Dynamic Compressive Properties in Single Aluminium-alloy Foam Block. , 2014, 4, 157-162.		4
41	Evolution of Metallic Foams Using Hot-stage Microscopy. , 2014, 4, 251-256.		4
42	Dynamic and quasi-static bending behaviour of thin-walled aluminium tubes filled with aluminium foam. Composite Structures, 2014, 109, 48-56.	5.8	137
43	Foaming of AA 6061 using multiple pieces of foamable precursor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 438, 47-55.	4.7	34
44	Aluminium Alloy Foams: Production and Properties. , 2012, , .		7
45	Failure Modes and Influence of the <i>Quasi </i> -static Deformation Rate on the Mechanical Behavior of Sandwich Panels with Aluminum Foam Cores. Mechanics of Advanced Materials and Structures, 2010, 17, 335-342.	2.6	32
46	Influence of Process Parameters on the Expansion Behaviour of Aluminium Foams., 2006,, 14-21.		1
47	Foaming around Fastening Elements. Materials Science Forum, 2006, 514-516, 712-717.	0.3	8
48	The Evolution of Morphology and Kinetics during the Foaming Process of Aluminium Foams. Key Engineering Materials, 2002, 230-232, 96-101.	0.4	2
49	Industrialization of Powder Compact Toaming Process. Advanced Engineering Materials, 2000, 2, 168-174.	3.5	277
50	Der SchĤmprozeğ von Aluminium. Materialwissenschaft Und Werkstofftechnik, 2000, 31, 409-411.	0.9	7
51	A study of aluminium foam formation—kinetics and microstructure. Acta Materialia, 2000, 48, 2349-2362.	7.9	262
52	Properties of metal foams., 2000,, 40-54.		17
53	Der Schämprozeß von Aluminium. Materialwissenschaft Und Werkstofftechnik, 2000, 31, 409-411.	0.9	0
54	Hybrid structures for Achilles' tendon repair. Polymers for Advanced Technologies, 0, , .	3.2	1