Stephen Burgess

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/174978/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reassessing the causal role of obesity in breast cancer susceptibility: a comprehensive multivariable Mendelian randomization investigating the distribution and timing of exposure. International Journal of Epidemiology, 2023, 52, 58-70.	1.9	9
2	Genetically predicted circulating vitamin C in relation to cardiovascular disease. European Journal of Preventive Cardiology, 2022, 28, 1829-1837.	1.8	8
3	Serum Estradiol and 20 Site-Specific Cancers in Women: Mendelian Randomization Study. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e467-e474.	3.6	13
4	Obesity and Kidney Function: A Two-Sample Mendelian Randomization Study. Clinical Chemistry, 2022, 68, 461-472.	3.2	25
5	Noise-augmented directional clustering of genetic association data identifies distinct mechanisms underlying obesity. PLoS Genetics, 2022, 18, e1009975.	3.5	8
6	Evidence for Shared Genetic Aetiology Between Schizophrenia, Cardiometabolic, and Inflammation-Related Traits: Genetic Correlation and Colocalization Analyses. Schizophrenia Bulletin Open, 2022, 3, sgac001.	1.7	19
7	Additive Effects of Genetic Interleukinâ€6 Signaling Downregulation and Lowâ€Density Lipoprotein Cholesterol Lowering on Cardiovascular Disease: A 2×2 Factorial Mendelian Randomization Analysis. Journal of the American Heart Association, 2022, 11, e023277.	3.7	19
8	Genetically Predicted Neutrophil-to-Lymphocyte Ratio and Coronary Artery Disease: Evidence From Mendelian Randomization. Circulation Genomic and Precision Medicine, 2022, 15, CIRCGEN121003553.	3.6	5
9	Genetically predicted sex hormone levels and health outcomes: phenome-wide Mendelian randomization investigation. International Journal of Epidemiology, 2022, 51, 1931-1942.	1.9	19
10	The evolution of mendelian randomization for investigating drug effects. PLoS Medicine, 2022, 19, e1003898.	8.4	9
11	Elucidating mechanisms of genetic cross-disease associations at the PROCR vascular disease locus. Nature Communications, 2022, 13, 1222.	12.8	5
12	Systemic iron status and maternal pregnancy complications: a Mendelian randomization study. International Journal of Epidemiology, 2022, 51, 1024-1027.	1.9	3
13	Treatment of severe covid-19 with interleukin 6 receptor inhibition. , 2022, 1, e000144.		3
14	Genetically Determined Reproductive Aging and Coronary Heart Disease: A Bidirectional 2-sample Mendelian Randomization. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e2952-e2961.	3.6	13
15	Dose–response relationships for vitamin D and all-cause mortality – Authors' reply. Lancet Diabetes and Endocrinology,the, 2022, 10, 158-159.	11.4	0
16	Lipid traits and type 2 diabetes risk in African ancestry individuals: A Mendelian Randomization study. EBioMedicine, 2022, 78, 103953.	6.1	23
17	Genetic evidence for vitamin D and cardiovascular disease: choice of variants is critical. European Heart Journal, 2022, 43, 1740-1742.	2.2	10
18	Combining evidence from Mendelian randomization and colocalization: Review and comparison of approaches. American Journal of Human Genetics, 2022, 109, 767-782.	6.2	101

#	Article	IF	CITATIONS
19	Genetically Predicted Pulse Pressure and Risk of Abdominal Aortic Aneurysm: A Mendelian Randomization Analysis. Circulation Genomic and Precision Medicine, 2022, 15, 101161CIRCGEN121003575.	3.6	2
20	Genetically predicted on-statin LDL response is associated with higher intracerebral haemorrhage risk. Brain, 2022, 145, 2677-2686.	7.6	15
21	Avoiding collider bias in Mendelian randomization when performing stratified analyses. European Journal of Epidemiology, 2022, 37, 671-682.	5.7	23
22	Associations between moderate alcohol consumption, brain iron, and cognition in UK Biobank participants: Observational and mendelian randomization analyses. PLoS Medicine, 2022, 19, e1004039.	8.4	28
23	Appraising the causal role of smoking in multiple diseases: A systematic review and meta-analysis of Mendelian randomization studies. EBioMedicine, 2022, 82, 104154.	6.1	56
24	Genetically predicted plasma phospholipid arachidonic acid concentrations and 10 site-specific cancers in UK biobank and genetic consortia participants: A mendelian randomization study. Clinical Nutrition, 2021, 40, 3332-3337.	5.0	15
25	A cross-platform approach identifies genetic regulators of human metabolism and health. Nature Genetics, 2021, 53, 54-64.	21.4	117
26	Genetically predicted physical activity levels are associated with lower colorectal cancer risk: a Mendelian randomisation study. British Journal of Cancer, 2021, 124, 1330-1338.	6.4	17
27	Mendelian randomization for studying the effects of perturbing drug targets. Wellcome Open Research, 2021, 6, 16.	1.8	90
28	Dose–response relationship between genetically proxied average blood glucose levels and incident coronary heart disease in individuals without diabetes mellitus. Diabetologia, 2021, 64, 845-849.	6.3	14
29	Polygenic risk scores in cardiovascular risk prediction: A cohort study and modelling analyses. PLoS Medicine, 2021, 18, e1003498.	8.4	95
30	Are Mendelian randomization investigations immune from bias due to reverse causation?. European Journal of Epidemiology, 2021, 36, 253-257.	5.7	57
31	Thyroid function, sex hormones and sexual function: a Mendelian randomization study. European Journal of Epidemiology, 2021, 36, 335-344.	5.7	43
32	A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits. Nature Communications, 2021, 12, 764.	12.8	195
33	Mendelian randomization for studying the effects of perturbing drug targets. Wellcome Open Research, 2021, 6, 16.	1.8	48
34	Genetic liability to insomnia in relation to cardiovascular diseases: a Mendelian randomisation study. European Journal of Epidemiology, 2021, 36, 393-400.	5.7	34
35	The potential shared role of inflammation in insulin resistance and schizophrenia: A bidirectional two-sample mendelian randomization study. PLoS Medicine, 2021, 18, e1003455.	8.4	37
36	Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19. Nature Medicine, 2021, 27, 668-676.	30.7	120

#	Article	IF	CITATIONS
37	Genetically predicted circulating B vitamins in relation to digestive system cancers. British Journal of Cancer, 2021, 124, 1997-2003.	6.4	8
38	Plasma Cortisol and Risk of Atrial Fibrillation: A Mendelian Randomization Study. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e2521-e2526.	3.6	9
39	Risk factors mediating the effect of body mass index and waist-to-hip ratio on cardiovascular outcomes: Mendelian randomization analysis. International Journal of Obesity, 2021, 45, 1428-1438.	3.4	39
40	Association of inflammation with depression and anxiety: evidence for symptom-specificity and potential causality from UK Biobank and NESDA cohorts. Molecular Psychiatry, 2021, 26, 7393-7402.	7.9	107
41	The causal effects of serum lipids and apolipoproteins on kidney function: multivariable and bidirectional Mendelian-randomization analyses. International Journal of Epidemiology, 2021, 50, 1569-1579.	1.9	18
42	Genetic Evidence for Repurposing of GLP1R (Glucagonâ€Like Peptideâ€1 Receptor) Agonists to Prevent Heart Failure. Journal of the American Heart Association, 2021, 10, e020331.	3.7	13
43	Body size and composition and risk of site-specific cancers in the UK Biobank and large international consortia: A mendelian randomisation study. PLoS Medicine, 2021, 18, e1003706.	8.4	35
44	Assessing the role of cortisol in cancer: a wide-ranged Mendelian randomisation study. British Journal of Cancer, 2021, 125, 1025-1029.	6.4	17
45	GWAS Identifies LINC01184/SLC12A2 as a Risk Locus for Skin and Soft Tissue Infections. Journal of Investigative Dermatology, 2021, 141, 2083-2086.e8.	0.7	4
46	Estimating the Population Benefits of Blood Pressure Lowering: A Wideâ€Angled Mendelian Randomization Study in UK Biobank. Journal of the American Heart Association, 2021, 10, e021098.	3.7	13
47	Associations of immunological proteins/traits with schizophrenia, major depression and bipolar disorder: A bi-directional two-sample mendelian randomization study. Brain, Behavior, and Immunity, 2021, 97, 176-185.	4.1	72
48	High-throughput multivariable Mendelian randomization analysis prioritizes apolipoprotein B as key lipid risk factor for coronary artery disease. International Journal of Epidemiology, 2021, 50, 893-901.	1.9	52
49	Integrative analysis of the plasma proteome and polygenic risk of cardiometabolic diseases. Nature Metabolism, 2021, 3, 1476-1483.	11.9	43
50	Discordant associations of educational attainment with ASD and ADHD implicate a polygenic form of pleiotropy. Nature Communications, 2021, 12, 6534.	12.8	3
51	Leveraging Genetic Data to Elucidate the Relationship Between COVIDâ€19 and Ischemic Stroke. Journal of the American Heart Association, 2021, 10, e022433.	3.7	11
52	Body mass index and body composition in relation to 14 cardiovascular conditions in UK Biobank: a Mendelian randomization study. European Heart Journal, 2020, 41, 221-226.	2.2	259
53	Shared mechanisms between coronary heart disease and depression: findings from a large UK general population-based cohort. Molecular Psychiatry, 2020, 25, 1477-1486.	7.9	153
54	Factorial Mendelian randomization: using genetic variants to assess interactions. International Journal of Epidemiology, 2020, 49, 1147-1158.	1.9	53

#	Article	IF	CITATIONS
55	Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization. Nature Communications, 2020, 11, 29.	12.8	112
56	Impact of Genetically Predicted Red Blood Cell Traits on Venous Thromboembolism: Multivariable Mendelian Randomization Study Using UK Biobank. Journal of the American Heart Association, 2020, 9, e016771.	3.7	17
57	Smoking, alcohol consumption, and cancer: A mendelian randomisation study in UK Biobank and international genetic consortia participants. PLoS Medicine, 2020, 17, e1003178.	8.4	103
58	Are we underestimating seroprevalence of SARS-CoV-2?. BMJ, The, 2020, 370, m3364.	6.0	56
59	Rising numbers of positive covid-19 tests in the UK. BMJ, The, 2020, 370, m3605.	6.0	3
60	Polygenic modelling of treatment effect heterogeneity. Genetic Epidemiology, 2020, 44, 868-879.	1.3	6
61	Lightening the viral load to lessen covid-19 severity. BMJ, The, 2020, 371, m4763.	6.0	17
62	IGF-1 and cardiometabolic diseases: a Mendelian randomisation study. Diabetologia, 2020, 63, 1775-1782.	6.3	44
63	Circulating interleukins in relation to coronary artery disease, atrial fibrillation and ischemic stroke and its subtypes: A two-sample Mendelian randomization study. International Journal of Cardiology, 2020, 313, 99-104.	1.7	37
64	Using human genetics to understand the disease impacts of testosterone in men and women. Nature Medicine, 2020, 26, 252-258.	30.7	384
65	A robust and efficient method for Mendelian randomization with hundreds of genetic variants. Nature Communications, 2020, 11, 376.	12.8	290
66	A comparison of robust Mendelian randomization methods using summary data. Genetic Epidemiology, 2020, 44, 313-329.	1.3	290
67	Genetic predisposition to smoking in relation to 14 cardiovascular diseases. European Heart Journal, 2020, 41, 3304-3310.	2.2	83
68	ACE inhibition and cardiometabolic risk factors, lung <i>ACE2</i> and <i>TMPRSS2</i> gene expression, and plasma ACE2 levels: a Mendelian randomization study. Royal Society Open Science, 2020, 7, 200958.	2.4	12
69	MendelianRandomization v0.5.0: updates to an R package for performing Mendelian randomization analyses using summarized data. Wellcome Open Research, 2020, 5, 252.	1.8	74
70	Body mass index and risk of dying from a bloodstream infection: A Mendelian randomization study. PLoS Medicine, 2020, 17, e1003413.	8.4	15
71	Predicting the effect of statins on cancer risk using genetic variants from a Mendelian randomization study in the UK Biobank. ELife, 2020, 9, .	6.0	23
72	MendelianRandomization v0.5.0: updates to an R package for performing Mendelian randomization analyses using summarized data. Wellcome Open Research, 2020, 5, 252.	1.8	24

#	Article	IF	CITATIONS
73	How humans can contribute to Mendelian randomization analyses. International Journal of Epidemiology, 2019, 48, 661-664.	1.9	23
74	Robust methods in Mendelian randomization via penalization of heterogeneous causal estimates. PLoS ONE, 2019, 14, e0222362.	2.5	80
75	Disentangling polygenic associations between attention-deficit/hyperactivity disorder, educational attainment, literacy and language. Translational Psychiatry, 2019, 9, 35.	4.8	25
76	Body mass index and all cause mortality in HUNT and UK Biobank studies: linear and non-linear mendelian randomisation analyses. BMJ: British Medical Journal, 2019, 364, l1042.	2.3	125
77	Assessing the causal association of glycine with risk of cardio-metabolic diseases. Nature Communications, 2019, 10, 1060.	12.8	85
78	Association of menopausal characteristics and risk of coronary heart disease: a pan-European case–cohort analysis. International Journal of Epidemiology, 2019, 48, 1275-1285.	1.9	47
79	Contextualizing selection bias in Mendelian randomization: how bad is it likely to be?. International Journal of Epidemiology, 2019, 48, 691-701.	1.9	139
80	Guidelines for performing Mendelian randomization investigations. Wellcome Open Research, 2019, 4, 186.	1.8	661
81	Guidelines for performing Mendelian randomization investigations. Wellcome Open Research, 2019, 4, 186.	1.8	511
82	Genetically elevated gamma-glutamyltransferase and Alzheimer's disease. Experimental Gerontology, 2018, 106, 61-66.	2.8	2
83	Inferring Causal Relationships Between Risk Factors and Outcomes from Genome-Wide Association Study Data. Annual Review of Genomics and Human Genetics, 2018, 19, 303-327.	6.2	163
84	Genetic predictors of testosterone and their associations with cardiovascular disease and risk factors: A Mendelian randomization investigation. International Journal of Cardiology, 2018, 267, 171-176.	1.7	49
85	Modal-based estimation via heterogeneity-penalized weighting: model averaging for consistent and efficient estimation in Mendelian randomization when a plurality of candidate instruments are valid. International Journal of Epidemiology, 2018, 47, 1242-1254.	1.9	65
86	The MR-Base platform supports systematic causal inference across the human phenome. ELife, 2018, 7, .	6.0	3,639
87	What indeed can be tested with an instrumental variable?. European Journal of Epidemiology, 2018, 33, 695-697.	5.7	0
88	Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates. European Journal of Epidemiology, 2018, 33, 947-952.	5.7	328
89	A review of instrumental variable estimators for Mendelian randomization. Statistical Methods in Medical Research, 2017, 26, 2333-2355.	1.5	821
90	Estimating and contextualizing the attenuation of odds ratios due to non collapsibility. Communications in Statistics - Theory and Methods, 2017, 46, 786-804.	1.0	18

#	Article	IF	CITATIONS
91	MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. International Journal of Epidemiology, 2017, 46, 1734-1739.	1.9	1,178
92	Mendelian Randomization Implicates High-Density Lipoprotein Cholesterol–Associated Mechanisms in Etiology of Age-Related Macular Degeneration. Ophthalmology, 2017, 124, 1165-1174.	5.2	109
93	Interpreting findings from Mendelian randomization using the MR-Egger method. European Journal of Epidemiology, 2017, 32, 377-389.	5.7	1,696
94	Semiparametric methods for estimation of a nonlinear exposureâ€outcome relationship using instrumental variables with application to Mendelian randomization. Genetic Epidemiology, 2017, 41, 341-352.	1.3	199
95	Assessing causality in associations between cannabis use and schizophrenia risk: a two-sample Mendelian randomization study. Psychological Medicine, 2017, 47, 971-980.	4.5	182
96	Extending the MRâ€Egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy. Statistics in Medicine, 2017, 36, 4705-4718.	1.6	261
97	Mendelian randomization with fineâ€mapped genetic data: Choosing from large numbers of correlated instrumental variables. Genetic Epidemiology, 2017, 41, 714-725.	1.3	122
98	Dissecting Causal Pathways Using Mendelian Randomization with Summarized Genetic Data: Application to Age at Menarche and Risk of Breast Cancer. Genetics, 2017, 207, 481-487.	2.9	170
99	Response to Hartwig and Davies. International Journal of Epidemiology, 2016, 45, 1679-1680.	1.9	97
100	Bias due to participant overlap in twoâ€sample Mendelian randomization. Genetic Epidemiology, 2016, 40, 597-608.	1.3	961
101	Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Statistics in Medicine, 2016, 35, 1880-1906.	1.6	593
102	Natriuretic peptides and integrated risk assessment for cardiovascular disease: an individual-participant-data meta-analysis. Lancet Diabetes and Endocrinology,the, 2016, 4, 840-849.	11.4	159
103	Association Between Low-Density Lipoprotein Cholesterol–Lowering Genetic Variants and Risk of Type 2 Diabetes. JAMA - Journal of the American Medical Association, 2016, 316, 1383.	7.4	310
104	Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genetic Epidemiology, 2016, 40, 304-314.	1.3	4,142
105	Moderate alcohol drinking in pregnancy increases risk for children's persistent conduct problems: causal effects in a Mendelian randomisation study. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2016, 57, 575-584.	5.2	45
106	Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nature Genetics, 2016, 48, 1151-1161.	21.4	261
107	BMI as a Modifiable Risk Factor for Type 2 Diabetes: Refining and Understanding Causal Estimates Using Mendelian Randomization. Diabetes, 2016, 65, 3002-3007.	0.6	144
108	Identification of genomic loci associated with resting heart rate and shared genetic predictors with all-cause mortality. Nature Genetics, 2016, 48, 1557-1563.	21.4	131

#	Article	IF	CITATIONS
109	Plasma urate and coronary heart disease: fingerprint match, but no smoking gun. Lancet Diabetes and Endocrinology,the, 2016, 4, 292-294.	11.4	1
110	Predicting the Direction of Causal Effect Based on an Instrumental Variable Analysis: A Cautionary Tale. Journal of Causal Inference, 2016, 4, 49-59.	1.2	15
111	Methods for meta-analysis of individual participant data from Mendelian randomisation studies with binary outcomes. Statistical Methods in Medical Research, 2016, 25, 272-293.	1.5	9
112	Mendelian randomization to assess causal effects of blood lipids on coronary heart disease. Current Opinion in Endocrinology, Diabetes and Obesity, 2016, 23, 124-130.	2.3	58
113	Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. American Journal of Clinical Nutrition, 2016, 103, 965-978.	4.7	437
114	Beyond Mendelian randomization: how to interpret evidence of shared genetic predictors. Journal of Clinical Epidemiology, 2016, 69, 208-216.	5.0	77
115	Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLoS Medicine, 2016, 13, e1002179.	8.4	324
116	The many weak instruments problem and Mendelian randomization. Statistics in Medicine, 2015, 34, 454-468.	1.6	112
117	Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects. American Journal of Epidemiology, 2015, 181, 251-260.	3.4	909
118	Mendelian randomization: where are we now and where are we going?. International Journal of Epidemiology, 2015, 44, 379-388.	1.9	155
119	Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. International Journal of Epidemiology, 2015, 44, 512-525.	1.9	4,680
120	Association between circulating 25-hydroxyvitamin D and incident type 2 diabetes: a mendelian randomisation study. Lancet Diabetes and Endocrinology,the, 2015, 3, 35-42.	11.4	164
121	Re: "Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects― American Journal of Epidemiology, 2015, 181, 290-291.	3.4	377
122	Genetic determinants of telomere length and risk of common cancers: a Mendelian randomization study. Human Molecular Genetics, 2015, 24, 5356-5366.	2.9	128
123	Association of Cardiometabolic Multimorbidity With Mortality. JAMA - Journal of the American Medical Association, 2015, 314, 52.	7.4	624
124	Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. European Journal of Epidemiology, 2015, 30, 543-552.	5.7	799
125	Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis. Lancet Diabetes and Endocrinology,the, 2015, 3, 243-253.	11.4	115
126	Genetically Determined Height and Coronary Artery Disease. New England Journal of Medicine, 2015, 372, 1608-1618.	27.0	220

#	Article	IF	CITATIONS
127	Iron and hepcidin as risk factors in atherosclerosis: what do the genes say?. BMC Genetics, 2015, 16, 79.	2.7	23
128	Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. International Journal of Epidemiology, 2015, 44, 484-495.	1.9	263
129	Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. International Journal of Epidemiology, 2014, 43, 922-929.	1.9	387
130	Lack of Identification in Semiparametric Instrumental Variable Models With Binary Outcomes. American Journal of Epidemiology, 2014, 180, 111-119.	3.4	18
131	Vitamin D and high blood pressure: causal association or epiphenomenon?. European Journal of Epidemiology, 2014, 29, 1-14.	5.7	117
132	Using Multivariable Mendelian Randomization to Disentangle the Causal Effects of Lipid Fractions. PLoS ONE, 2014, 9, e108891.	2.5	86
133	Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data. Genetic Epidemiology, 2013, 37, 658-665.	1.3	2,705
134	Identifying the odds ratio estimated by a twoâ€stage instrumental variable analysis with a logistic regression model. Statistics in Medicine, 2013, 32, 4726-4747.	1.6	65
135	Using Mendelian randomization to assess and develop clinical interventions: limitations and benefits. Journal of Comparative Effectiveness Research, 2013, 2, 209-212.	1.4	13
136	Use of allele scores as instrumental variables for Mendelian randomization. International Journal of Epidemiology, 2013, 42, 1134-1144.	1.9	351
137	Efficient Design for Mendelian Randomization Studies: Subsample and 2-Sample Instrumental Variable Estimators. American Journal of Epidemiology, 2013, 178, 1177-1184.	3.4	768
138	Combining multiple imputation and metaâ€enalysis with individual participant data. Statistics in Medicine, 2013, 32, 4499-4514.	1.6	56
139	Re: "Credible Mendelian Randomization Studies: Approaches For Evaluating The Instrumental Variable Assumptions". American Journal of Epidemiology, 2012, 176, 456-457.	3.4	7
140	Use of Mendelian randomisation to assess potential benefit of clinical intervention. BMJ, The, 2012, 345, e7325-e7325.	6.0	212
141	Improving bias and coverage in instrumental variable analysis with weak instruments for continuous and binary outcomes. Statistics in Medicine, 2012, 31, 1582-1600.	1.6	64
142	Bias in causal estimates from Mendelian randomization studies with weak instruments. Statistics in Medicine, 2011, 30, 1312-1323.	1.6	213
143	Avoiding bias from weak instruments in Mendelian randomization studies. International Journal of Epidemiology, 2011, 40, 755-764.	1.9	1,416
144	Missing Data Methods in Mendelian Randomization Studies With Multiple Instruments. American Journal of Epidemiology, 2011, 174, 1069-1076.	3.4	11

#	Article	IF	CITATIONS
145	Bayesian methods for metaâ€analysis of causal relationships estimated using genetic instrumental variables. Statistics in Medicine, 2010, 29, 1298-1311.	1.6	22