Ana Alastruey-Izquierdo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1749649/publications.pdf Version: 2024-02-01

		57758	54911
138	8,150	44	84
papers	citations	h-index	g-index
152	152	152	7199
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infectious Diseases, The, 2019, 19, e405-e421.	9.1	970
2	The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infectious Diseases, The, 2017, 17, e383-e392.	9.1	670
3	Tackling the emerging threat of antifungal resistance to human health. Nature Reviews Microbiology, 2022, 20, 557-571.	28.6	311
4	<i>Aspergillus</i> Section <i>Fumigati</i> : Antifungal Susceptibility Patterns and Sequence-Based Identification. Antimicrobial Agents and Chemotherapy, 2008, 52, 1244-1251.	3.2	233
5	Tracing the Evolutionary History and Global Expansion of Candida auris Using Population Genomic Analyses. MBio, 2020, 11, .	4.1	224
6	DNA barcoding in <i>Mucorales</i> : an inventory of biodiversity. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2013, 30, 11-47.	4.4	219
7	Population-Based Survey of Filamentous Fungi and Antifungal Resistance in Spain (FILPOP Study). Antimicrobial Agents and Chemotherapy, 2013, 57, 3380-3387.	3.2	206
8	Reclassification of the Candida haemulonii Complex as Candida haemulonii (C. haemulonii Group I), C. duobushaemulonii sp. nov. (C. haemulonii Group II), and C. haemulonii var. vulnera var. nov.: Three Multiresistant Human Pathogenic Yeasts. Journal of Clinical Microbiology, 2012, 50, 3641-3651.	3.9	201
9	Epidemiological Cutoffs and Cross-Resistance to Azole Drugs in <i>Aspergillus fumigatus</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 2468-2472.	3.2	196
10	Antifungal susceptibility profile of clinical Fusarium spp. isolates identified by molecular methods. Journal of Antimicrobial Chemotherapy, 2008, 61, 805-809.	3.0	191
11	Scedosporium and Lomentospora: an updated overview of underrated opportunists. Medical Mycology, 2018, 56, S102-S125.	0.7	186
12	Comparison of the Vitek 2 Antifungal Susceptibility System with the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) Broth Microdilution Reference Methods and with the Sensititre YeastOne and Etest Techniques for <i>In Vitro</i> Detection of Antifungal Resistance in Yeast Isolates. Journal of Clinical Microbiology, 2010,	3.9	147
13	48, 1782-1786. Mucormycosis: Battle with the Deadly Enemy over a Five-Year Period in India. Journal of Fungi (Basel,) Tj ETQq1 1	0.784314	rgBT /Overlo
14	SUSCEPTIBILITY TEST FOR FUNGI: CLINICAL AND LABORATORIAL CORRELATIONS IN MEDICAL MYCOLOGY. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2015, 57, 57-64.	1.1	127
15	Prevalence and Susceptibility Profile of <i>Candida metapsilosis</i> and <i>Candida orthopsilosis</i> : Results from Population-Based Surveillance of Candidemia in Spain. Antimicrobial Agents and Chemotherapy, 2008, 52, 1506-1509.	3.2	126
16	Species Recognition and Clinical Relevance of the Zygomycetous Genus <i>Lichtheimia</i> (syn. <i>Absidia Pro Parte</i> , <i>Mycocladus</i>). Journal of Clinical Microbiology, 2010, 48, 2154-2170.	3.9	121
17	Fks1 and Fks2 Are Functionally Redundant but Differentially Regulated in Candida glabrata: Implications for Echinocandin Resistance. Antimicrobial Agents and Chemotherapy, 2012, 56, 6304-6309.	3.2	113
18	Fungal co-infection in COVID-19 patients: Should we be concerned?. Revista Iberoamericana De Micologia, 2020, 37, 41-46.	0.9	113

#	Article	IF	CITATIONS
19	Antifungal Susceptibility Profile of Cryptic Species of Aspergillus. Mycopathologia, 2014, 178, 427-433.	3.1	108
20	Triazole Resistance in Aspergillus spp.: A Worldwide Problem?. Journal of Fungi (Basel, Switzerland), 2016, 2, 21.	3.5	108
21	Global guideline for the diagnosis and management of the endemic mycoses: an initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology. Lancet Infectious Diseases, The, 2021, 21, e364-e374.	9.1	99
22	Unraveling the Enzymatic Basis of Wine "Flavorome― A Phylo-Functional Study of Wine Related Yeast Species. Frontiers in Microbiology, 2016, 7, 12.	3.5	98
23	Candida tropicalis Antifungal Cross-Resistance Is Related to Different Azole Target (Erg11p) Modifications. Antimicrobial Agents and Chemotherapy, 2013, 57, 4769-4781.	3.2	96
24	Case Definition of Chronic Pulmonary Aspergillosis in Resource-Constrained Settings. Emerging Infectious Diseases, 2018, 24, .	4.3	89
25	Treatment of Chronic Pulmonary Aspergillosis: Current Standards and Future Perspectives. Respiration, 2018, 96, 159-170.	2.6	85
26	In vitro activity of antifungals against Zygomycetes. Clinical Microbiology and Infection, 2009, 15, 71-76.	6.0	79
27	Activity of Posaconazole and Other Antifungal Agents against <i>Mucorales</i> Strains Identified by Sequencing of Internal Transcribed Spacers. Antimicrobial Agents and Chemotherapy, 2009, 53, 1686-1689.	3.2	77
28	Direct Analysis and Identification of Pathogenic Lichtheimia Species by Matrix-Assisted Laser Desorption Ionization–Time of Flight Analyzer-Mediated Mass Spectrometry. Journal of Clinical Microbiology, 2012, 50, 419-427.	3.9	75
29	<i>Candida parapsilosis</i> , <i>Candida orthopsilosis</i> , and <i>Candida metapsilosis</i> virulence in the non-conventional host <i>Galleria mellonella</i> . Virulence, 2014, 5, 278-285.	4.4	73
30	Susceptibility Testing and Molecular Classification of <i>Paecilomyces</i> spp. Antimicrobial Agents and Chemotherapy, 2008, 52, 2926-2928.	3.2	72
31	In Vitro Activities of 35 Double Combinations of Antifungal Agents against <i>Scedosporium apiospermum</i> and <i>Scedosporium prolificans</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 1136-1139.	3.2	72
32	Species Identification and Antifungal Susceptibility Patterns of Species Belonging to <i>Aspergillus</i> Section <i>Nigri</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 4514-4517.	3.2	70
33	Ecology of Scedosporium Species: Present Knowledge and Future Research. Mycopathologia, 2018, 183, 185-200.	3.1	66
34	Azole-Resistance in Aspergillus terreus and Related Species: An Emerging Problem or a Rare Phenomenon?. Frontiers in Microbiology, 2018, 9, 516.	3.5	66
35	In Vitro Activities of Various Antifungal Drugs against <i>Aspergillus terreus</i> : Global Assessment Using the Methodology of the European Committee on Antimicrobial Susceptibility Testing. Antimicrobial Agents and Chemotherapy, 2009, 53, 794-795.	3.2	62
36	Method-Dependent Epidemiological Cutoff Values for Detection of Triazole Resistance in <i>Candida</i> and <i>Aspergillus</i> Species for the Sensititre YeastOne Colorimetric Broth and Etest Agar Diffusion Methods. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	59

#	Article	IF	CITATIONS
37	In vitro activity of olorofim (F901318) against clinical isolates of cryptic species of Aspergillus by EUCAST and CLSI methodologies. Journal of Antimicrobial Chemotherapy, 2019, 74, 1586-1590.	3.0	56
38	Prevalence and Susceptibility Testing of New Species of Pseudallescheria and Scedosporium in a Collection of Clinical Mold Isolates. Antimicrobial Agents and Chemotherapy, 2007, 51, 748-751.	3.2	54
39	Burden of serious fungal infections in Spain. Clinical Microbiology and Infection, 2015, 21, 183-189.	6.0	54
40	Developing definitions for invasive fungal diseases in critically ill adult patients in intensive care units. Protocol of the <scp>FUN</scp> gal infections Definitions in <scp>ICU</scp> patients (<scp>FUNDICU</scp>) project. Mycoses, 2019, 62, 310-319.	4.0	53
41	Disseminated Candidiasis Caused by Candida albicans with Amino Acid Substitutions in Fks1 at Position Ser645 Cannot Be Successfully Treated with Micafungin. Antimicrobial Agents and Chemotherapy, 2011, 55, 3075-3083.	3.2	50
42	Rapid Development of Candida krusei Echinocandin Resistance during Caspofungin Therapy. Antimicrobial Agents and Chemotherapy, 2015, 59, 6975-6982.	3.2	50
43	Cutaneous infection by <i>Phomopsis longicolla</i> in a renal transplant recipient from Guinea: first report of human infection by this fungus. Transplant Infectious Disease, 2011, 13, 204-207.	1.7	49
44	Detection and treatment of <i>Candida auris</i> in an outbreak situation: risk factors for developing colonization and candidemia by this new species in critically ill patients. Expert Review of Anti-Infective Therapy, 2019, 17, 295-305.	4.4	49
45	Identificación molecular y sensibilidad a los antifúngicos de cepas de Trichosporon aisladas en un hospital de Brasil. Revista Iberoamericana De Micologia, 2008, 25, 221-225.	0.9	47
46	Executive summary of clinical practice guideline for the management of invasive diseases caused by Aspergillus: 2018 Update by the GEMICOMED-SEIMC/REIPI. Enfermedades Infecciosas Y MicrobiologÃa ClÂnica, 2019, 37, 535-541.	0.5	46
47	Genomic and Phenotypic Heterogeneity of Clinical Isolates of the Human Pathogens Aspergillus fumigatus, Aspergillus lentulus, and Aspergillus fumigatiaffinis. Frontiers in Genetics, 2020, 11, 459.	2.3	44
48	<i>Saksenaea erythrospora</i> , an emerging mucoralean fungus causing severe necrotizing skin and soft tissue infections – a study from a tertiary care hospital in north India. Infectious Diseases, 2017, 49, 170-177.	2.8	43
49	Pharmacodynamics of Echinocandins against Candida glabrata: Requirement for Dosage Escalation To Achieve Maximal Antifungal Activity in Neutropenic Hosts. Antimicrobial Agents and Chemotherapy, 2011, 55, 4880-4887.	3.2	42
50	A prospective international Aspergillus terreus survey: an EFISG, ISHAM and ECMM joint study. Clinical Microbiology and Infection, 2017, 23, 776.e1-776.e5.	6.0	42
51	Chronic pulmonary aspergillosis update: A year in review. Medical Mycology, 2019, 57, S104-S109.	0.7	42
52	In vitroactivity of nine antifungal agents against clinical isolates ofAspergillus calidoustus. Medical Mycology, 2010, 48, 97-102.	0.7	40
53	Molecular identification, antifungal resistance and virulence of <i>Cryptococcus neoformans</i> and <i>Cryptococcus deneoformans</i> isolated in Seville, Spain. Mycoses, 2017, 60, 40-50.	4.0	40
54	Current section and species complex concepts in <i>Aspergillus:</i> recommendations for routine daily practice. Annals of the New York Academy of Sciences, 2012, 1273, 18-24.	3.8	39

#	Article	IF	CITATIONS
55	Fungal necrotizing fasciitis, an emerging infectious disease caused by Apophysomyces (Mucorales). Revista Iberoamericana De Micologia, 2015, 32, 93-98.	0.9	38
56	New resistance mechanisms to azole drugs inAspergillus fumigatusand emergence of antifungal drugs-resistantA. fumigatusatypical strains. Medical Mycology, 2006, 44, 367-371.	0.7	37
57	Genotype distribution of clinical isolates of Trichosporon asahii based on sequencing of intergenic spacer 1. Diagnostic Microbiology and Infectious Disease, 2007, 58, 435-440.	1.8	36
58	In vitro activity of APX001A against rare moulds using EUCAST and CLSI methodologies. Journal of Antimicrobial Chemotherapy, 2019, 74, 1295-1299.	3.0	35
59	A Revised Species Concept for Opportunistic <i>Mucor</i> Species Reveals Species-Specific Antifungal Susceptibility Profiles. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	34
60	Azole resistance survey on clinical Aspergillus fumigatus isolates in Spain. Clinical Microbiology and Infection, 2021, 27, 1170.e1-1170.e7.	6.0	34
61	Molecular Identification and Susceptibility Testing of Molds Isolated in a Prospective Surveillance of Triazole Resistance in Spain (FILPOP2 Study). Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	33
62	Pathogenicity of Candida albicans isolates from bloodstream and mucosal candidiasis assessed in mice and Galleria mellonella. Journal De Mycologie Medicale, 2016, 26, 1-8.	1.5	32
63	Posaconazole MIC Distributions for Aspergillus fumigatus Species Complex by Four Methods: Impact of <i>cyp51A</i> Mutations on Estimation of Epidemiological Cutoff Values. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	30
64	Clinical and Laboratory Development of Echinocandin Resistance in Candida glabrata: Molecular Characterization. Frontiers in Microbiology, 2019, 10, 1585.	3.5	30
65	Disseminated Fusariosis Caused by <i>Fusarium verticillioides</i> in an Acute Lymphoblastic Leukemia Patient after Allogeneic Hematopoietic Stem Cell Transplantation. Journal of Clinical Microbiology, 2009, 47, 278-281.	3.9	28
66	A CPAnet consensus statement on research priorities for chronic pulmonary aspergillosis: a neglected fungal infection that requires attention. Journal of Antimicrobial Chemotherapy, 2018, 73, 280-286.	3.0	28
67	Essential in vitro diagnostics for advanced HIV and serious fungal diseases: international experts' consensus recommendations. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 1581-1584.	2.9	28
68	Do high MICs predict the outcome in invasive fusariosis?. Journal of Antimicrobial Chemotherapy, 2021, 76, 1063-1069.	3.0	28
69	Developing collaborative works for faster progress on fungal respiratory infections in cystic fibrosis. Medical Mycology, 2018, 56, S42-S59.	0.7	27
70	Molecular Identification, Antifungal Susceptibility Testing, and Mechanisms of Azole Resistance in Aspergillus Species Received within a Surveillance Program on Antifungal Resistance in Spain. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	27
71	Antifungal Susceptibility Profile of Human-Pathogenic Species of <i>Lichtheimia</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 3058-3060.	3.2	26
72	Analysis of the Protein Domain and Domain Architecture Content in Fungi and Its Application in the Search of New Antifungal Targets. PLoS Computational Biology, 2014, 10, e1003733.	3.2	25

#	Article	IF	CITATIONS
73	Infections due to <i>Phialemonium</i> species: case report and review. Medical Mycology, 2009, 47, 766-774.	0.7	24
74	Chaetomium-like fungi causing opportunistic infections in humans: a possible role for extremotolerance. Fungal Diversity, 2016, 76, 11-26.	12.3	24
75	The Diagnostic Laboratory Hub: A New Health Care System Reveals the Incidence and Mortality of Tuberculosis, Histoplasmosis, and Cryptococcosis of PWH in Guatemala. Open Forum Infectious Diseases, 2020, 7, ofz534.	0.9	24
76	Comparative performance of the laboratory assays used by a Diagnostic Laboratory Hub for opportunistic infections in people living with HIV. Aids, 2020, 34, 1625-1632.	2.2	23
77	<i>In vitro</i> activity of olorofim against clinical isolates of <i>Scedosporium</i> species and <i>Lomentospora prolificans</i> using EUCAST and CLSI methodologies. Journal of Antimicrobial Chemotherapy, 2020, 75, 3582-3585.	3.0	23
78	Clinical relevance of resistance to antifungals. International Journal of Antimicrobial Agents, 2008, 32, S111-S113.	2.5	22
79	Molecular identification and susceptibility profile in vitro of the emerging pathogen Candida kefyr. Diagnostic Microbiology and Infectious Disease, 2010, 66, 116-119.	1.8	22
80	<i>Aspergillus alliaceus</i> and <i>Aspergillus flavus</i> co-infection in an acute myeloid leukemia patient. Medical Mycology, 2010, 48, 995-999.	0.7	22
81	A Rapid Screening Program for Histoplasmosis, Tuberculosis, and Cryptococcosis Reduces Mortality in HIV Patients from Guatemala. Journal of Fungi (Basel, Switzerland), 2021, 7, 268.	3.5	22
82	Diagnostics and susceptibility testing in <i>Aspergillus</i> . Future Microbiology, 2016, 11, 315-328.	2.0	21
83	Eighty Years of Mycopathologia: A Retrospective Analysis of Progress Made in Understanding Human and Animal Fungal Pathogens. Mycopathologia, 2018, 183, 859-877.	3.1	21
84	Diagnosis of Breakthrough Fungal Infections in the Clinical Mycology Laboratory: An ECMM Consensus Statement. Journal of Fungi (Basel, Switzerland), 2020, 6, 216.	3.5	21
85	Diversity of coelomycetous fungi in human infections: A 10-y experience of two European reference centres. Fungal Biology, 2019, 123, 341-349.	2.5	20
86	Comparison of Dimethyl Sulfoxide and Water as Solvents for Echinocandin Susceptibility Testing by the EUCAST Methodology. Journal of Clinical Microbiology, 2012, 50, 2509-2512.	3.9	19
87	ECMM <i>Candi</i> Reg—A ready to use platform for outbreaks and epidemiological studies. Mycoses, 2019, 62, 920-927.	4.0	19
88	Evaluation of a Novel Mitochondrial Pan-Mucorales Marker for the Detection, Identification, Quantification, and Growth Stage Determination of Mucormycetes. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /C)v e rłock 1() 1 950 137 1

89	Fungal epidemiology in cystic fibrosis patients with a special focus on Scedosporium species complex. Microbial Pathogenesis, 2019, 129, 168-175.	2.9	19
90	Invasive Fusariosis in Nonneutropenic Patients, Spain, 2000–2015. Emerging Infectious Diseases, 2021, 27, 24-36.	4.3	19

IF

CITATIONS

91	EUCAST and CLSI: How to Assess in Vitro Susceptibility and Clinical Resistance. Current Fungal Infection Reports, 2012, 6, 229-234.	2.6	18
92	CPAnet Registry—An International Chronic Pulmonary Aspergillosis Registry. Journal of Fungi (Basel,) Tj ETQq0	0	Overlock 10
93	Antifungal susceptibility profile of clinical Alternaria spp. identified by molecular methods. Journal of Antimicrobial Chemotherapy, 2011, 66, 2585-2587.	3.0	17
94	Environmental Screening for the Scedosporium apiospermum Species Complex in Public Parks in Bangkok, Thailand. PLoS ONE, 2016, 11, e0159869.	2.5	16
95	Genetic diversity and antifungal susceptibility patterns of <i>Aspergillus nidulans</i> complex obtained from clinical and environmental sources. Mycoses, 2020, 63, 78-88.	4.0	16
96	Impact of the COVID-19 pandemic on HIV care in Guatemala. International Journal of Infectious Diseases, 2021, 108, 422-427.	3.3	16
97	Development and Validation of a High-Resolution Melting Assay To Detect Azole Resistance in Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	15
98	Polyphasic identification of three new species in <i>Alternaria</i> section <i>Infectoriae</i> causing human cutaneous infection. Mycoses, 2020, 63, 212-224.	4.0	15
99	Fungal Keratitis Due to Beauveria bassiana in a Contact Lenses Wearer and Review of Published Reports. Mycopathologia, 2016, 181, 745-752.	3.1	14
100	In Vitro Activity of Ibrexafungerp against a Collection of Clinical Isolates of Aspergillus, Including Cryptic Species and Cyp51A Mutants, Using EUCAST and CLSI Methodologies. Journal of Fungi (Basel,) Tj ETQqC) O 0.5 gBT	/Ovuerlock 1
101	MixInYeast: A Multicenter Study on Mixed Yeast Infections. Journal of Fungi (Basel, Switzerland), 2021, 7, 13.	3.5	14
102	Time of Incubation for Antifungal Susceptibility Testing of <i>Aspergillus fumigatus</i> : Can MIC Values Be Obtained at 24 Hours?. Antimicrobial Agents and Chemotherapy, 2007, 51, 4502-4504.	3.2	13
103	Multilocus sequence typing ofCandida albicansisolates from candidemia and superficial candidiasis in Israel. Medical Mycology, 2013, 51, 755-758.	0.7	13
104	Point Mutations in the 14-α Sterol Demethylase Cyp51A or Cyp51C Could Contribute to Azole Resistance in Aspergillus flavus. Genes, 2020, 11, 1217.	2.4	13
105	Incidence of Histoplasmosis in a Cohort of People with HIV: From Estimations to Reality. Microorganisms, 2021, 9, 2596.	3.6	13
106	Ribosomic DNA intergenic spacer 1 region is useful when identifying Candida parapsilosis spp. complex based on high-resolution melting analysis. Medical Mycology, 2014, 52, 472-481.	0.7	12
107	Nationwide surveillance of azole-resistant Aspergillus fumigatus environmental isolates in Greece: detection of pan-azole resistance associated with the TR46/Y121F/T289A cyp51A mutation. Journal of Antimicrobial Chemotherapy, 2020, 75, 3181-3188.	3.0	12
108	Disseminated Infection due to Saksenaea vasiformis Secondary to Cutaneous Mucormycosis. Mycopathologia, 2014, 177, 97-101.	3.1	11

#

ARTICLE

#	Article	IF	CITATIONS
109	Emerging mould infections: Get prepared to meet unexpected fungi in your patient. Medical Mycology, 2019, 58, 156-162.	0.7	10
110	Phaeohyphomycosis caused by Medicopsis romeroi in solid organ transplant recipients: Report of two cases and comprehensive review of the literature. Transplant Infectious Disease, 2019, 21, e13072.	1.7	10
111	Treatment outcome definitions in chronic pulmonary aspergillosis: a CPAnet consensus statement. European Respiratory Journal, 2022, 59, 2102950.	6.7	9
112	Changing Epidemiology of Mucoralean Fungi: Chronic Cutaneous Infection Caused by Mucor irregularis. Mycopathologia, 2015, 180, 181-186.	3.1	8
113	Sequence analysis of isolates of Aspergillus from patients with chronic and allergic aspergillosis reveals a spectrum of cryptic species. Future Microbiology, 2018, 13, 1557-1563.	2.0	8
114	Wild Boar (Sus scrofa) as Reservoir of Zoonotic Yeasts: Bioindicator of Environmental Quality. Mycopathologia, 2022, 187, 235-248.	3.1	7
115	Apophysomyces variabilis, an emerging and worrisome cause of primary cutaneous necrotizing infections in India. Journal De Mycologie Medicale, 2021, 31, 101197.	1.5	6
116	Pharmacodynamics of Voriconazole for Invasive Pulmonary Scedosporiosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	5
117	Neocucurbitaria keratinophila: An emerging opportunistic fungus causing superficial mycosis in Spain. Medical Mycology, 2019, 57, 733-738.	0.7	5
118	Case Series Study of Invasive Pulmonary Aspergillosis. Mycopathologia, 2017, 182, 505-515.	3.1	4
119	First isolation of Conidiobolus sp. in a respiratory sample of a patient in Europe. Clinical Microbiology and Infection, 2017, 23, 834.	6.0	4
120	Draft Genome Sequences of Four <i>Aspergillus</i> Section <i>Fumigati</i> Clinical Strains. Microbiology Resource Announcements, 2020, 9, .	0.6	4
121	Detection and Control of Fungal Outbreaks. Mycopathologia, 2020, 185, 741-745.	3.1	4
122	Aspergillosis by cryptic Aspergillus species: A case series and review of the literature. Revista Iberoamericana De Micologia, 2022, 39, 44-49.	0.9	4
123	Epidemiology and Mortality of Cryptococcal Disease in Guatemala: Two-Year Results of a Cryptococcal Antigen Screening Program. Microorganisms, 2022, 10, 1388.	3.6	3
124	Examining Signatures of Natural Selection in Antifungal Resistance Genes Across Aspergillus Fungi. Frontiers in Fungal Biology, 2021, 2, .	2.0	2
125	Updated estimated incidence and prevalence of serious fungal infections in Trinidad and Tobago. IJID Regions, 2021, , .	1.3	2
126	Executive summary of clinical practice guideline for the management of invasive diseases caused by Aspergillus: 2018 Update by the GEMICOMED-SEIMC/REIPI. Enfermedades Infecciosas Y Microbiologia Clinica (English Ed), 2019, 37, 535-541.	0.3	1

ANA ALASTRUEY-IZQUIERDO

#	Article	IF	CITATIONS
127	Albifimbria verrucaria keratitis: a case report. Enfermedades Infecciosas Y Microbiologia Clinica (English Ed), 2020, 38, 398-399.	0.3	1
128	Successful treatment of invasive aspergillosis caused by Aspergillus parafelis in a kidney transplant recipient. Medical Mycology Case Reports, 2020, 30, 35-38.	1.3	1
129	Genotyping and In Vitro Antifungal Susceptibility Profile of Neoscytalidium Species Isolates from Respiratory Tract. Mycopathologia, 2021, 186, 833-845.	3.1	1
130	Late Breaking Abstract - CPAnet Registry – An International Chronic Pulmonary Aspergillosis Registry. , 2020, , .		1
131	Cutaneous lesions and hemiparesis in a kidney transplant recipient. Enfermedades Infecciosas Y Microbiologia Clinica (English Ed), 2018, 36, 246-248.	0.3	0
132	Cutaneous lesions and hemiparesis in a kidney transplant recipient. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2018, 36, 246-248.	0.5	0
133	Photo Quiz: Nasal Respiratory Difficulties and Rhinorrhea in a 16-Year-Old Female. Journal of Clinical Microbiology, 2019, 57, .	3.9	0
134	Answer to January 2019 Photo Quiz. Journal of Clinical Microbiology, 2019, 57, .	3.9	0
135	Unusual etiology of keratitis in a patient with bullous queratopathy. Enfermedades Infecciosas Y Microbiologia Clinica (English Ed), 2020, 38, 84-85.	0.3	0
136	Queratitis por Albifimbria verrucaria: a propósito de un caso. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2020, 38, 398-399.	0.5	0
137	Queratitis de etiologÃa inusual en paciente con queratopatÃa bullosa. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2020, 38, 84-85.	0.5	0
138	Role of lizards as reservoirs of pathogenic yeasts of zoonotic concern. Acta Tropica, 2022, 231, 106472.	2.0	0