
Fu Jing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1749464/publications.pdf Version: 2024-02-01

FULING

#	Article	IF	CITATIONS
1	Efficient degradation of bisphenol A via peroxydisulfate activation using in-situ N-doped carbon nanoparticles: Structure-function relationship and reaction mechanism. Journal of Colloid and Interface Science, 2021, 586, 551-562.	9.4	52
2	Synergistic adsorption and electrocatalytic reduction of bromate by Pd/N-doped loofah sponge-derived biochar electrode. Journal of Hazardous Materials, 2020, 386, 121651.	12.4	49
3	Enhanced anaerobic co-digestion of waste activated sludge and food waste by sulfidated microscale zerovalent iron: Insights in direct interspecies electron transfer mechanism. Bioresource Technology, 2020, 316, 123901.	9.6	67
4	Title is missing!. , 2020, 15, e0234086.		0
5	Title is missing!. , 2020, 15, e0234086.		0
6	Title is missing!. , 2020, 15, e0234086.		0
7	Title is missing!. , 2020, 15, e0234086.		0
8	Title is missing!. , 2020, 15, e0234086.		0
9	Title is missing!. , 2020, 15, e0234086.		0
10	Evaluating the effect of biochar on mesophilic anaerobic digestion of waste activated sludge and microbial diversity. Bioresource Technology, 2019, 294, 122235.	9.6	48
11	Engineering peptidoglycan degradation related genes of Bacillus subtilis for better fermentation processes. Bioresource Technology, 2018, 248, 238-247.	9.6	12
12	Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis. Metabolic Engineering, 2018, 48, 138-149.	7.0	45
13	YAP mediates human decidualization of the uterine endometrial stromal cells. Placenta, 2017, 53, 30-35.	1.5	26
14	Systematic metabolic engineering of <i>Corynebacterium glutamicum</i> for the industrial-level production of optically pure <scp>d</scp> -(â^')-acetoin. Green Chemistry, 2017, 19, 5691-5702.	9.0	36
15	Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis. PLoS ONE, 2016, 11, e0159298.	2.5	29
16	Metabolic engineering of <i>Corynebacterium glutamicum</i> for efficient production of 5â€aminolevulinic acid. Biotechnology and Bioengineering, 2016, 113, 1284-1293.	3.3	63
17	Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Biotechnology for Biofuels, 2016, 9, 90.	6.2	80
18	Directed evolution of adenylosuccinate synthetase from Bacillus subtilis and its application in metabolic engineering. Journal of Biotechnology, 2016, 231, 115-121.	3.8	12

Fu Jing

#	Article	IF	CITATIONS
19	Characterization of genome-reduced Bacillus subtilis strains and their application for the production of guanosine and thymidine. Microbial Cell Factories, 2016, 15, 94.	4.0	36
20	Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis. Microbial Cell Factories, 2014, 13, 101.	4.0	39
21	NADH plays the vital role for chiral pure Dâ€{â^')â€2,3â€butanediol production in <i>Bacillus subtilis</i> under limited oxygen conditions. Biotechnology and Bioengineering, 2014, 111, 2126-2131.	3.3	63
22	Deregulation of purine pathway in. Microbial Cell Factories, 2014, 13, 101.	4.0	10
23	Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures. Journal of Biotechnology, 2013, 168, 499-505.	3.8	44
24	In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol. Molecular BioSystems, 2013, 9, 2034.	2.9	42
25	Establishment of a Markerless Mutation Delivery System in Bacillus subtilis Stimulated by a Double-Strand Break in the Chromosome. PLoS ONE, 2013, 8, e81370.	2.5	37
26	Metabolic engineering of Bacillus subtilis for enhanced production of acetoin. Biotechnology Letters, 2012, 34, 1877-1885.	2.2	51
27	Oligosaccharide polyester and triterpenoid saponins from the roots of Polygala japonica. Phytochemistry, 2008, 69, 1617-1624.	2.9	26
28	Three new xanthones from the roots ofPolygala japonicaHoutt Journal of Asian Natural Products Research, 2006, 8, 41-46.	1.4	10
29	Study of a <i>upp</i> -Based Counterselective Method for Large-Scale Deletion of Genome Fragments in <i>Bacillus subtilis</i> . Advanced Materials Research, 0, 634-638, 1076-1080.	0.3	0