Yaniv Gelbstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1748955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Origin of the High Performance in GeTe-Based Thermoelectric Materials upon Bi ₂ Te ₃ Doping. Journal of the American Chemical Society, 2014, 136, 11412-11419.	13.7	319
2	High performance n-type PbTe-based materials for thermoelectric applications. Physica B: Condensed Matter, 2005, 363, 196-205.	2.7	231
3	Controlling Metallurgical Phase Separation Reactions of the Ge _{0.87} Pb _{0.13} Te Alloy for High Thermoelectric Performance. Advanced Energy Materials, 2013, 3, 815-820.	19.5	202
4	Mechanical properties of PbTe-based thermoelectric semiconductors. Scripta Materialia, 2008, 58, 251-254.	5.2	137
5	Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling. Journal of Applied Physics, 2015, 118, .	2.5	121
6	Physical, Mechanical, and Structural Properties of Highly Efficient Nanostructured n- and p-Silicides for Practical Thermoelectric Applications. Journal of Electronic Materials, 2014, 43, 1703-1711.	2.2	119
7	Phase separation and antisite defects in the thermoelectric TiNiSn half-Heusler alloys. Journal of Solid State Chemistry, 2013, 203, 247-254.	2.9	113
8	Highly efficient functional Ge _x Pb _{1â^²x} Te based thermoelectric alloys. Physical Chemistry Chemical Physics, 2014, 16, 20120-20126.	2.8	111
9	A Comparison Between the Mechanical and Thermoelectric Properties of Three Highly Efficient p-Type GeTe-Rich Compositions: TAGS-80, TAGS-85, and 3% Bi2Te3-Doped Ge0.87Pb0.13Te. Journal of Electronic Materials, 2013, 42, 1542-1549.	2.2	104
10	Functional Graded Germanium–Lead Chalcogenideâ€Based Thermoelectric Module for Renewable Energy Applications. Advanced Energy Materials, 2015, 5, 1500272.	19.5	95
11	Thermoelectric power and structural properties in two-phase Sn/SnTe alloys. Journal of Applied Physics, 2009, 105, .	2.5	90
12	Highly textured Bi2Te3-based materials for thermoelectric energy conversion. Journal of Applied Physics, 2007, 101, 113707.	2.5	89
13	An ab initio study of the thermoelectric enhancement potential in nano-grained TiNiSn. Physical Chemistry Chemical Physics, 2014, 16, 20023-20029.	2.8	84
14	A Comparison Between the Effects of Sb and Bi Doping on the Thermoelectric Properties of the Ti0.3Zr0.35Hf0.35NiSn Half-Heusler Alloy. Journal of Electronic Materials, 2014, 43, 1976-1982.	2.2	80
15	Texture anisotropy of higher manganese silicide following arc-melting and hot-pressing. Intermetallics, 2016, 68, 71-77.	3.9	80
16	Effective Electronic Mechanisms for Optimizing the Thermoelectric Properties of GeTeâ€Rich Alloys. Advanced Electronic Materials, 2015, 1, 1500228.	5.1	79
17	Enhancement of the thermoelectric properties of n-type PbTe by Na and Cl co-doping. Journal of Materials Chemistry C, 2015, 3, 9559-9564.	5.5	79
18	Pb1â^'x Sn x Te Alloys: Application Considerations. Journal of Electronic Materials, 2011, 40, 533-536.	2.2	76

#	Article	IF	CITATIONS
19	Significant lattice thermal conductivity reduction following phase separation of the highly efficient Ge _{<i>x</i>} Pb _{1-<i>x</i>} Te thermoelectric alloys. Physica Status Solidi (B): Basic Research, 2014, 251, 1431-1437.	1.5	76
20	High Thermoelectric Figure of Merit and Nanostructuring in Bulk <i>p</i> -type Ge _{<i>x</i>} (Sn _{<i>y</i>} 1â^' <i>y</i> 1â^' <i>y</i>) _{1â^'<i>x</i>}] Following a Spinodal Decomposition Reaction. Chemistry of Materials, 2010, 22, 1054-1058.	6.7	75
21	Electronic tuning of the transport properties of off-stoichiometric Pb <i>x</i> Snlâ^' <i>x</i> Te thermoelectric alloys by Bi2Te3 doping. Journal of Applied Physics, 2015, 118, .	2.5	75
22	High thermoelectric potential of Bi2Te3 alloyed GeTe-rich phases. Journal of Applied Physics, 2016, 120, .	2.5	75
23	Phase morphology effects on the thermoelectric properties of Pb0.25Sn0.25Ge0.5Te. Acta Materialia, 2013, 61, 1499-1507.	7.9	74
24	High temperature thermoelectric properties evolution of Pb1-Sn Te based alloys. Journal of Alloys and Compounds, 2017, 722, 33-38.	5.5	72
25	Powder metallurgical processing of functionally graded p-Pb1â°'xSnxTe materials for thermoelectric applications. Physica B: Condensed Matter, 2007, 391, 256-265.	2.7	71
26	Thermoelectric properties of spark plasma sintered composites based on TiNiSn half-Heusler alloys. Journal of Materials Research, 2011, 26, 1919-1924.	2.6	71
27	Morphological effects on the thermoelectric properties of Ti _{0.3} Zr _{0.35} Hf _{0.35} Ni _{1+δ} Sn alloys following phase separation. Journal of Materials Chemistry C, 2015, 3, 11653-11659.	5.5	71
28	Thermoelectric Properties of the Quasi-Binary MnSi1.73–FeSi2 System. Journal of Electronic Materials, 2015, 44, 1637-1643.	2.2	70
29	High thermoelectric potential of <i>n</i> -type Pb1â^ <i>x</i> Ti <i>x</i> Te alloys. Journal of Applied Physics, 2016, 120, .	2.5	70
30	Nucleation of nanosize particles following the spinodal decomposition in the pseudo-ternary Ge0.6Sn0.1Pb0.3Te compound. Scripta Materialia, 2010, 62, 89-92.	5.2	67
31	Development of Bi2Te2.4Se0.6 alloy for thermoelectric power generation applications. Journal of Alloys and Compounds, 2016, 679, 196-201.	5.5	67
32	The search for mechanically stable PbTe based thermoelectric materials. Journal of Applied Physics, 2008, 104, .	2.5	65
33	Criteria for extending the operation periods of thermoelectric converters based on IV-VI compounds. Journal of Solid State Chemistry, 2016, 241, 79-85.	2.9	65
34	Highly Efficient Ge-Rich Ge x Pb1â^'x Te Thermoelectric Alloys. Journal of Electronic Materials, 2010, 39, 2049-2052.	2.2	64
35	Thermoelectric Bi ₂ Te _{3â^'x} Se _x alloys for efficient thermal to electrical energy conversion. Physical Chemistry Chemical Physics, 2018, 20, 4092-4099.	2.8	63
36	Effects of Microstructural Evolution on the Thermoelectric Properties of Spark-Plasma-Sintered Ti0.3Zr0.35Hf0.35NiSn Half-Heusler Compound. Journal of Electronic Materials, 2013, 42, 1340-1345.	2.2	62

#	Article	IF	CITATIONS
37	Structural Evolution Following Spinodal Decomposition of the Pseudoternary Compound (Pb0.3Sn0.1Ge0.6)Te. Journal of Electronic Materials, 2010, 39, 2165-2171.	2.2	61
38	TiNiSn half-Heusler crystals grown from metallic flux for thermoelectric applications. Journal of Alloys and Compounds, 2019, 781, 1132-1138.	5.5	61
39	Mechanical Alloying and Spark Plasma Sintering of Higher Manganese Silicides for Thermoelectric Applications. Journal of Electronic Materials, 2013, 42, 1926-1931.	2.2	60
40	Thermoelectric Properties Evolution of Spark Plasma Sintered (Ge _{0.6} Pb _{0.3} Sn _{0.1})Te Following a Spinodal Decomposition. Journal of Physical Chemistry C, 2010, 114, 13126-13131.	3.1	59
41	Highly efficient bismuth telluride doped pâ€ŧype Pb _{0.13} Ge _{0.87} Te for thermoelectric applications. Physica Status Solidi - Rapid Research Letters, 2007, 1, 232-234.	2.4	57
42	Silicon-Rich Higher Manganese Silicides for Thermoelectric Applications. Journal of Electronic Materials, 2012, 41, 1504-1508.	2.2	57
43	Investigation of the thermoelectric potential for heating, cooling and ventilation in buildings: Characterization options and applications. Renewable Energy, 2019, 131, 229-239.	8.9	57
44	Bonding of Bi2Te3-Based Thermoelectric Legs to Metallic Contacts Using Bi0.82Sb0.18 Alloy. Journal of Electronic Materials, 2016, 45, 1296-1300.	2.2	56
45	Thermoelectric Properties of (Pb,Sn,Ge)Te-Based Alloys. Journal of Electronic Materials, 2009, 38, 1478-1482.	2.2	54
46	Phase separation and thermoelectric properties of the Pb0.25Sn0.25Ge0.5Te compound. Journal of Alloys and Compounds, 2012, 526, 31-38.	5.5	53
47	Submicron Features in Higher Manganese Silicide. Journal of Nanomaterials, 2013, 2013, 1-5.	2.7	53
48	Thermoelectric properties of p-type didymium (DD) based skutterudites DDy(Fe1â^'xNix)4Sb12 (0.13⩽xâ©)½0,25,) Tj 5.5	i ETQq0 0 0 rg
49	In-doped Pb0.5Sn0.5Te p-type samples prepared by powder metallurgical processing for thermoelectric applications. Physica B: Condensed Matter, 2007, 396, 16-21.	2.7	51
50	Solubility of Ti in thermoelectric PbTe compound. Intermetallics, 2017, 89, 16-21.	3.9	49
51	Evaluation of the mechanical properties of SS-316L thin foils by small punch testing and finite element analysis. Materials and Design, 2015, 83, 75-84.	7.0	43
52	Characterization of AISI 4340 corrosion products using Raman spectroscopy. Corrosion Science, 2013, 74, 414-418.	6.6	32
53	Sc solubility in p-type half-Heusler (Ti1-Sc)NiSn thermoelectric alloys. Journal of Alloys and Compounds, 2017, 729, 446-452.	5.5	31
54	Enhanced Thermoelectric Properties of n-Type Bi ₂ Te _{3–<i>x</i>} Se <i>_{<i>x</i>}</i> Alloys following Melt-Spinning. ACS Applied Energy Materials, 2020, 3, 2090-2095.	5.1	26

#	Article	IF	CITATIONS
55	Estimation of yield and ultimate stress using the small punch test method applied to non-standard specimens: A computational study validated by experiments. International Journal of Mechanical Sciences, 2018, 135, 484-498.	6.7	17
56	Surface Oxidation of TiNiSn (Half-Heusler) Alloy by Oxygen and Water Vapor. Materials, 2018, 11, 2296.	2.9	16
57	Aging condition and trapped hydrogen effects on the mechanical behavior of a precipitation hardened martensitic stainless steel. Journal of Alloys and Compounds, 2019, 805, 509-516.	5.5	16
58	Mechanical Properties of Thermoelectric Materials for Practical Applications. , 0, , .		15
59	Phase transitions of p-type (Pb,Sn,Ge)Te-based alloys for thermoelectric applications. Journal of Crystal Growth, 2009, 311, 4289-4292.	1.5	14
60	Compatibility between Co-Metallized PbTe Thermoelectric Legs and an Ag–Cu–In Brazing Alloy. Materials, 2018, 11, 99.	2.9	14
61	Phase Stability of Nanocrystalline Grains of Rare-Earth Oxides (Sm2O3 and Eu2O3) Confined in Magnesia (MgO) Matrix. Materials, 2020, 13, 2201.	2.9	14
62	High thermoelectric performance of p-type half-Heusler (Hf,Ti)Co(Sb,Sn) solid solutions fabricated by mechanical alloying. Journal of Alloys and Compounds, 2021, 858, 158330.	5.5	14
63	Microstructure Evolution of Ag-Alloyed PbTe-Based Compounds and Implications for Thermoelectric Performance. Crystals, 2017, 7, 281.	2.2	13
64	Investigation of the Effect of MoSe2 on the Thermoelectric Properties of n-Type Bi2Te2.4Se0.6. Journal of Electronic Materials, 2015, 44, 1402-1407.	2.2	12
65	The Initial Stage in Oxidation of ZrNiSn (Half Heusler) Alloy by Oxygen. Materials, 2019, 12, 1509.	2.9	11
66	Thermoelectric transport properties of (Ti1â^'cAlc)NiSn half-Heusler alloy. Physical Chemistry Chemical Physics, 2020, 22, 1566-1574. Thermoelectric Properties of the cmml:math	2.8	11
67	xmins:mmi= http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	.0 T£.50 25	57 Tad (stretc
68	Thermal shock resistant solid oxide fuel cell ceramic composite electrolytes. Journal of Alloys and Compounds, 2020, 821, 153490.	5.5	10
69	Morphological effects on the electronic transport properties of three-phase thermoelectric materials. Journal of Applied Physics, 2012, 112, .	2.5	9
70	Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ) Powder. Materials, 2017, 10, 1440.	2.9	9
71	Bismuth doping of induction furnace synthesized Mg2Si, Mg2Sn and Mg2Ge thermoelectric compounds. Intermetallics, 2020, 120, 106767.	3.9	9
72	n-type (Zr,Ti)NiSn half Heusler materials via mechanical alloying: Structure, Sb-doping and thermoelectric properties. Journal of Physics and Chemistry of Solids, 2022, 167, 110735.	4.0	9

#	Article	IF	CITATIONS
73	Doping in controlling the type of conductivity in bulk and nanostructured thermoelectric materials. Journal of Solid State Chemistry, 2016, 240, 91-100.	2.9	8
74	The Mechanical Behavior of HAVAR Foils Using the Small Punch Technique. Materials, 2017, 10, 491.	2.9	8
75	Metallurgical and Hydrogen Effects on the Small Punch Tested Mechanical Properties of PH-13-8Mo Stainless Steel. Materials, 2018, 11, 1966.	2.9	8
76	Thermoelectric properties of Ti0.3Zr0.35Hf0.35Ni1.005Sn half-Heusler alloy. Journal of Applied Physics, 2019, 126, .	2.5	8
77	Combined electronic and thermodynamic approaches for enhancing the thermoelectric properties of Ti-doped PbTe. Physical Chemistry Chemical Physics, 2016, 18, 32429-32437.	2.8	7
78	Thermoelectric and mechanical properties of Ag and Cu doped (GeTe)0.96(Bi2Te3)0.04. MRS Communications, 2018, 8, 1292-1299.	1.8	7
79	Influence of galia (Ga2O3) addition on the phase transformations and crystal growth behavior of zirconia (ZrO2). Journal of Materials Science, 2018, 53, 12741-12749.	3.7	7
80	PbO–SiO ₂ -based glass doped with B ₂ O ₃ and Na ₂ O for coating of thermoelectric materials. Journal of Materials Research, 2019, 34, 3563-3572.	2.6	7
81	Lattice variations in nanocrystalline Y2O3 confined in magnesia (MgO) matrix. Journal of Alloys and Compounds, 2019, 801, 375-380.	5.5	7
82	Composition conserving defects and their influence on the electronic properties of thermoelectric TiNiSn. Physical Chemistry Chemical Physics, 2020, 22, 8035-8047.	2.8	7
83	Synthesis of n-type PbTe by powder metallurgy. , 0, , .		6
84	Rhombohedral-cubic phase transition characterization of (Pb,Ge)Te using high-temperature XRD. Powder Diffraction, 2008, 23, 137-140.	0.2	6
85	Physical Metallurgy Inspired Nanoâ€Features for Enhancement of Thermoelectric Conversion Efficiency. Advanced Theory and Simulations, 2018, 1, 1800072.	2.8	6
86	Al solubility in (Ti _{1â^'c} Al _c)NiSn half-Heusler alloy. Physical Chemistry Chemical Physics, 2019, 21, 7524-7533.	2.8	6
87	Hybrid structural electronics printing by novel dry film stereolithography and laser induced forward transfer. Nano Select, 2021, 2, 979-991.	3.7	6
88	High entropy alloy on single sub-lattice in MNiSn compound: Stability and thermoelectric properties. Journal of Alloys and Compounds, 2021, 874, 159940.	5.5	5
89	Lattice variation of cubic Y2O3 in three dimensions: Temperature, pressure and crystal size. Journal of Alloys and Compounds, 2021, 885, 161199.	5.5	5
90	Design, synthesis and characterization of graded n-type PbTe. , 0, , .		4

Design, synthesis and characterization of graded n-type PbTe. , 0, , . 90

#	Article	IF	CITATIONS
91	Evaporation–condensation effects on the thermoelectric performance of PbTe-based couples. Physical Chemistry Chemical Physics, 2017, 19, 19326-19333.	2.8	4
92	Peculiarities of doping of nanograined thermoelectric TiNiSn by 3d noble and transition metals. Intermetallics, 2018, 98, 154-160.	3.9	4
93	Applying the general effective media (GEM) approach for analyzing the thermal conductivity of ZrO2–8YSZ composites. Physical Chemistry Chemical Physics, 2018, 20, 16666-16672.	2.8	4
94	Influence of galia (Ga2O3) addition on the phase evolution and grain growth behavior of voided yttria stabilized zirconia (YSZ) powder. Journal of Alloys and Compounds, 2019, 783, 286-291.	5.5	4
95	Reduction of Hf via Hf/Zr Substitution in Mechanically Alloyed (Hf,Ti)CoSb Half-Heusler Solid Solutions. Inorganics, 2022, 10, 51.	2.7	4
96	Preparation and Thermoelectric Properties of N-type PbTe Doped with In and PbI2. , 2006, , .		3
97	APPLYING TEP MEASUREMENTS TO ASSESS THE AGING STAGE OF MARAGING 250 STEEL. AIP Conference Proceedings, 2008, , .	0.4	3
98	Ion-induced n-p inversion of conductivity in TiNiSn compound for thermoelectric applications. Journal of Applied Physics, 2019, 126, 155106.	2.5	3
99	Optimization of thermoelectric efficiency in graded materials. , 0, , .		2
100	Improved power factor of Bi0.4Sb1.6Te3 - based samples prepared by cold pressing and sintering. , 2006, ,		2
101	Orienting MoS2 flakes into ordered films. Journal of Materials Science, 2014, 49, 7353-7359.	3.7	2
102	The origin of the effect of aging on the thermoelectric power of maraging C250 steel. Journal of Materials Science, 2015, 50, 7698-7704.	3.7	2
103	Simulation of Morphological Effects on Thermoelectric Power, Thermal and Electrical Conductivity in Multiâ€Phase Thermoelectric Materials. , 0, , .		2
104	Electronic properties of co-doped nonstoichiometric germanium telluride. Intermetallics, 2021, 131, 107118.	3.9	2
105	The Initial Oxidation of HfNiSn Half-Heusler Alloy by Oxygen and Water Vapor. Materials, 2021, 14, 3942.	2.9	2
106	Microstructural effects on the thermoelectric performance of Ge0.962Bi0.038Te1.057. Journal of Alloys and Compounds, 2022, 918, 165663.	5.5	2
107	Development of p-Pb1-xSnxTe Functionally Graded Materials. , 2006, , .		1
108	Vertical power MOS transistor as a thermoelectric quasi-nanowire device. Journal of Applied Physics, 2016, 120, 244903.	2.5	1

#	Article	IF	CITATIONS
109	Enhanced thermoelectric properties of n-type Ti-doped PbTe. MRS Advances, 2019, 4, 1683-1689.	0.9	1
110	Co-doping effect on the electronic properties of nonstoichiometric tin telluride. MRS Advances, 2019, 4, 1699-1707.	0.9	1
111	PbO-SiO2 Based Glass Coating of PbI2 Doped PbTe. Metals, 2020, 10, 284.	2.3	1
112	Transport properties of PbI/sub 2/-doped PbTe. , 0, , .		0
113	Thermoelectric Properties of p-type In-doped Pb1-xSnxTe. , 2006, , .		0
114	Functionally Graded Bi <inf>2</inf> Te <inf>3</inf> based material for above ambient temperature application. , 2007, , .		0
115	KINETIC STUDY OF AGING IN A URANIUM-TITANIUM EUTECTOID ALLOY USING THERMOELECTRIC POWER MEASUREMENT. AIP Conference Proceedings, 2008, , .	0.4	0
116	APPLYING TEP MEASUREMENTS TO ASSESS THE RESPONSE OF HASTELLOY TO LONG TIME AGING. , 2009, , .		0
117	Bismuth Telluride Solubility Limit and Dopant Effects on the Electronic Properties of Lead Telluride. , $0,,.$		0
118	Mechanical properties of proton bombarded SS316L thin foils using the small punch technique. Journal of Nuclear Materials, 2020, 540, 152340.	2.7	0