Daniel J Bernard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/174827/publications.pdf

Version: 2024-02-01

124 papers 4,133 citations

35 h-index 58 g-index

129 all docs

129 docs citations

times ranked

129

3004 citing authors

#	Article	IF	Citations
1	Steroidogenic Factor 1 Regulation of the Hypothalamic-Pituitary-Ovarian Axis of Adult Female Mice. Endocrinology, 2022, 163 , .	2.8	4
2	Single nucleus transcriptome and chromatin accessibility of postmortem human pituitaries reveal diverse stem cell regulatory mechanisms. Cell Reports, 2022, 38, 110467.	6.4	27
3	Inhibin Inactivation in Female Mice Leads to Elevated FSH Levels, Ovarian Overstimulation, and Pregnancy Loss. Endocrinology, 2022, 163, .	2.8	5
4	The Hippo Pathway Effectors YAP and TAZ Regulate LH Release by Pituitary Gonadotrope Cells in Mice. Endocrinology, 2022, 163, .	2.8	8
5	Deletion of $\widehat{\text{Gl}}$ +q/11 or $\widehat{\text{Gl}}$ +s Proteins in Gonadotropes Differentially Affects Gonadotropin Production and Secretion in Mice. Endocrinology, 2022, 163, .	2.8	5
6	Transcription factor GATA2 may potentiate follicle-stimulating hormone production in mice via induction of the BMP antagonist gremlin in gonadotrope cells. Journal of Biological Chemistry, 2022, 298, 102072.	3.4	5
7	The extant immunoglobulin superfamily, member 1 gene results from an ancestral gene duplication in eutherian mammals. PLoS ONE, 2022, 17, e0267744.	2.5	O
8	IGSF1 Deficiency Leads to Reduced TSH Production Independent of Alterations in Thyroid Hormone Action in Male Mice. Endocrinology, 2022, 163, .	2.8	2
9	Development of a Highly Sensitive ELISA for Measurement of FSH in Serum, Plasma, and Whole Blood in Mice. Endocrinology, 2021, 162, .	2.8	20
10	IGSF1 Does Not Regulate Spermatogenesis or Modify FSH Synthesis in Response to Inhibins or Activins. Journal of the Endocrine Society, 2021, 5, bvab023.	0.2	2
11	Ablation of TGFBR3 (betaglycan) in oocytes does not affect fertility in female mice. Reproduction, 2021, 161, 289-294.	2.6	O
12	Kisspeptin-54 injection induces a physiological luteinizing hormone surge and ovulation in mice. Biology of Reproduction, 2021, 104, 1181-1183.	2.7	7
13	Single nucleus multi-omics regulatory landscape of the murine pituitary. Nature Communications, 2021, 12, 2677.	12.8	38
14	TGFBR3L is an inhibin B co-receptor that regulates female fertility. Science Advances, 2021, 7, eabl4391.	10.3	21
15	Addition of a carboxy-terminal tail to the normally tailless gonadotropin-releasing hormone receptor impairs fertility in female mice. ELife, 2021, 10, .	6.0	2
16	Anterior Pituitary. , 2020, , 119-144.		6
17	IGSF1 Deficiency Results in Human and Murine Somatotrope Neurosecretory Hyperfunction. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e70-e84.	3. 6	22
18	A Tale of Two Proteins: Betaglycan, IGSF1, and the Continuing Search for the Inhibin B Receptor. Trends in Endocrinology and Metabolism, 2020, 31, 37-45.	7.1	14

#	Article	IF	CITATIONS
19	Gonadotrope-specific deletion of the BMP type 2 receptor does not affect reproductive physiology in miceâ€â€¡. Biology of Reproduction, 2020, 102, 639-646.	2.7	7
20	Human Follicle-Stimulating Hormone $\tilde{\text{A}}\ddot{\text{Y}}$ Subunit Expression Depends on FOXL2 and SMAD4. Endocrinology, 2020, 161 , .	2.8	8
21	Response to Letter to the Editor: "lGSF1 Deficiency Results in Human and Murine Somatotrope Neurosecretory Hyperfunction― Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2315-e2316.	3.6	0
22	Murine FSH Production Depends on the Activin Type II Receptors ACVR2A and ACVR2B. Endocrinology, 2020, 161, .	2.8	17
23	Impaired LH surge amplitude in gonadotrope-specific progesterone receptor knockout mice. Journal of Endocrinology, 2020, 244, 111-122.	2.6	9
24	Cytogenetic, Genomic, and Functional Characterization of Pituitary Gonadotrope Cell Lines. Journal of the Endocrine Society, 2019, 3, 902-920.	0.2	13
25	TGF- \hat{l}^2 Superfamily Regulation of Follicle-Stimulating Hormone Synthesis by Gonadotrope Cells: Is There a Role for Bone Morphogenetic Proteins?. Endocrinology, 2019, 160, 675-683.	2.8	15
26	S100a4-Cre–mediated deletion of Ptch1 causes hypogonadotropic hypogonadism: role of pituitary hematopoietic cells in endocrine regulation. JCI Insight, 2019, 4, .	5.0	7
27	HDAC inhibitors impair Fshb subunit expression in murine gonadotrope cells. Journal of Molecular Endocrinology, 2019, 62, 67-78.	2.5	7
28	SAT-414 Cytogenetic, Genomic, and Functional Characterization of Pituitary Gonadotrope Cell Lines. Journal of the Endocrine Society, 2019, 3 , .	0.2	0
29	SAT-416 IGSF1 Does Not Regulate FSH Synthesis or Secretion. Journal of the Endocrine Society, 2019, 3, .	0.2	0
30	SAT-546 Discovering the Function of IGSF1 and Its Role in the Hypothalamic-Pituitary-Thyroid Axis. Journal of the Endocrine Society, 2019, 3, .	0.2	0
31	Sex- and Age-Specific Impact of ERK Loss Within the Pituitary Gonadotrope in Mice. Endocrinology, 2018, 159, 1264-1276.	2.8	12
32	From Consternation to Revelation: Discovery of a Role for IGSF1 in Pituitary Control of Thyroid Function. Journal of the Endocrine Society, 2018, 2, 220-231.	0.2	21
33	Betaglycan (TGFBR3) Functions as an Inhibin A, but Not Inhibin B, Coreceptor in Pituitary Gonadotrope Cells in Mice. Endocrinology, 2018, 159, 4077-4091.	2.8	40
34	Single-cell stabilization method identifies gonadotrope transcriptional dynamics and pituitary cell type heterogeneity. Nucleic Acids Research, 2018, 46, 11370-11380.	14.5	21
35	Activins and Inhibins in Female Reproduction. , 2018, , 202-210.		0
36	A novel <scp>IGSF</scp> 1 mutation in a large Irish kindred highlights the need for familial screening in the <scp>IGSF</scp> 1 deficiency syndrome. Clinical Endocrinology, 2018, 89, 813-823.	2.4	16

#	Article	IF	CITATIONS
37	Conditional Deletion of FOXL2 and SMAD4 in Gonadotropes of Adult Mice Causes Isolated FSH Deficiency. Endocrinology, 2018, 159, 2641-2655.	2.8	26
38	Structural basis for potency differences between GDF8 and GDF11. BMC Biology, 2017, 15, 19.	3.8	90
39	SMAD3 Regulates Follicle-stimulating Hormone Synthesis by Pituitary Gonadotrope Cells in Vivo. Journal of Biological Chemistry, 2017, 292, 2301-2314.	3.4	41
40	TRH Action Is Impaired in Pituitaries of Male IGSF1-Deficient Mice. Endocrinology, 2017, 158, 815-830.	2.8	32
41	A Novel IGSF1 Mutation in a Boy With Short Stature and Hypercholesterolemia: A Case Report. Journal of the Endocrine Society, 2017, 1, 731-736.	0.2	7
42	Mechanisms of Inhibin Actionâ [*] †., 2017, , .		0
43	The short mRNA isoform of the immunoglobulin superfamily, member 1 gene encodes an intracellular glycoprotein. PLoS ONE, 2017, 12, e0180731.	2.5	3
44	Pituitary Hormone Secretion Profiles in IGSF1 Deficiency Syndrome. Neuroendocrinology, 2016, 103, 408-416.	2.5	22
45	Normal gonadotropin production and fertility in gonadotrope-specific Bmpr1a knockout mice. Journal of Endocrinology, 2016, 229, 331-341.	2.6	9
46	Disinhibiting an Inhibitor: Genetic Engineering Leads to Improvements in Recombinant Inhibin A Production. Endocrinology, 2016, 157, 2583-2585.	2.8	1
47	Familial Central Hypothyroidism Caused by a Novel <i>IGSF1</i> Gene Mutation. Thyroid, 2016, 26, 1693-1700.	4.5	23
48	Delayed Adrenarche may be an Additional Feature of Immunoglobulin Super Family Member 1 Deficiency Syndrome. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2016, 8, 86-91.	0.9	25
49	IGSF1 variants in boys with familial delayed puberty. European Journal of Pediatrics, 2015, 174, 687-692.	2.7	19
50	Is IGSF1 involved in human pituitary tumor formation?. Endocrine-Related Cancer, 2015, 22, 47-54.	3.1	16
51	Minireview: Activin Signaling in Gonadotropes: What Does the FOX say… to the SMAD?. Molecular Endocrinology, 2015, 29, 963-977.	3.7	42
52	Spatial and temporal expression of immunoglobulin superfamily member 1 in the rat. Journal of Endocrinology, 2015, 226, 181-191.	2.6	28
53	\hat{l}^2 -Catenin Stabilization in Gonadotropes Impairs FSH Synthesis in Male Mice In Vivo. Endocrinology, 2015, 156, 323-333.	2.8	17
54	Follicleâ€stimulating hormone synthesis and fertility depend on SMAD4 and FOXL2. FASEB Journal, 2014, 28, 3396-3410.	0.5	68

#	Article	IF	CITATIONS
55	Follicleâ€stimulating hormone synthesis and fertility are intact in mice lacking SMAD3 DNA binding activity and SMAD2 in gonadotrope cells. FASEB Journal, 2014, 28, 1474-1485.	0.5	27
56	Bone Morphogenetic Protein 2 Stimulates Noncanonical SMAD2/3 Signaling via the BMP Type 1A Receptor in Gonadotrope-Like Cells: Implications for FSH Synthesis. Endocrinology, 2014, 155, 1970-1981.	2.8	37
57	Photoperiod-dependent regulation of gonadotropin-releasing hormone 1 messenger ribonucleic acid levels in the songbird brain. General and Comparative Endocrinology, 2013, 190, 81-87.	1.8	19
58	Three Novel <i>IGSF1</i> Mutations in Four Japanese Patients With X-Linked Congenital Central Hypothyroidism. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1682-E1691.	3.6	38
59	Activins bind and signal via bone morphogenetic protein receptor type II (BMPR2) in immortalized gonadotrope-like cells. Cellular Signalling, 2013, 25, 2717-2726.	3.6	30
60	Cycloheximide inhibits follicle-stimulating hormone \hat{l}^2 subunit transcription by blocking de novo synthesis of the labile activin type II receptor in gonadotrope cells. Cellular Signalling, 2013, 25, 1403-1412.	3.6	11
61	Impaired Fertility and FSH Synthesis in Gonadotrope-Specific Foxl2 Knockout Mice. Molecular Endocrinology, 2013, 27, 407-421.	3.7	64
62	IGSF1 deficiency syndrome. Rare Diseases (Austin, Tex), 2013, 1, e24883.	1.8	29
63	Mechanisms of Activin-Stimulated FSH Synthesis: The Story of a Pig and a FOX1. Biology of Reproduction, 2013, 88, 78.	2.7	35
64	NR5A2 Regulates Lhb and Fshb Transcription in Gonadotrope-Like Cells In Vitro, but Is Dispensable for Gonadotropin Synthesis and Fertility In Vivo. PLoS ONE, 2013, 8, e59058.	2.5	22
65	The CpG Island in the Murine Foxl2 Proximal Promoter Is Differentially Methylated in Primary and Immortalized Cells. PLoS ONE, 2013, 8, e76642.	2.5	11
66	Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement. Nature Genetics, 2012, 44, 1375-1381.	21.4	169
67	Activin A induction of murine and ovine follicle-stimulating hormone \hat{l}^2 transcription is SMAD-dependent and TAK1 (MAP3K7)/p38 MAPK-independent in gonadotrope-like cells. Cellular Signalling, 2012, 24, 1632-1640.	3.6	15
68	Mechanisms of bone morphogenetic protein 2 (BMP2) stimulated inhibitor of DNA binding 3 (Id3) transcription. Molecular and Cellular Endocrinology, 2011, 332, 242-252.	3.2	25
69	SMADs and FOXL2 Synergistically Regulate Murine FSH \hat{l}^2 Transcription Via a Conserved Proximal Promoter Element. Molecular Endocrinology, 2011, 25, 1170-1183.	3.7	61
70	SMAD3 and EGR1 physically and functionally interact in promoter-specific fashion. Cellular Signalling, 2010, 22, 936-943.	3.6	16
71	$G\hat{l}^2\hat{l}^3$ is a negative regulator of AP-1 mediated transcription. Cellular Signalling, 2010, 22, 1254-1266.	3.6	29
72	Activin A induction of $FSH\hat{1}^2$ subunit transcription requires SMAD4 in immortalized gonadotropes. Journal of Molecular Endocrinology, 2010, 44, 349-362.	2.5	23

#	Article	IF	Citations
73	Activin A Regulates Porcine Follicle-Stimulating Hormone \hat{l}^2 -Subunit Transcription via Cooperative Actions of SMADs and FOXL2. Endocrinology, 2010, 151, 5456-5467.	2.8	40
74	Bone Morphogenetic Protein 2 Acts via Inhibitor of DNA Binding Proteins to Synergistically Regulate Follicle-Stimulating Hormone \hat{l}^2 Transcription with Activin A. Endocrinology, 2010, 151, 3445-3453.	2.8	17
75	Mechanisms of FSH synthesis: what we know, what we don't, and why you should care. Fertility and Sterility, 2010, 93, 2465-2485.	1.0	123
76	Bone Morphogenetic Protein 2 Signals via BMPR1A to Regulate Murine Follicle-Stimulating Hormone Beta Subunit Transcription1. Biology of Reproduction, 2009, 81, 133-141.	2.7	34
77	Photoperiodic Condition Is Associated with Region-Specific Expression of GNRH1 mRNA in the Preoptic Area of the Male Starling (Sturnus vulgaris)1. Biology of Reproduction, 2009, 81, 674-680.	2.7	29
78	A Novel Role for the Forkhead Transcription Factor FOXL2 in Activin A-Regulated Follicle-Stimulating Hormone \hat{l}^2 Subunit Transcription. Molecular Endocrinology, 2009, 23, 1001-1013.	3.7	78
79	Conservation of mechanisms mediating gonadotrophin-releasing hormone 1 stimulation of human luteinizing hormone \hat{l}^2 subunit transcription. Molecular Human Reproduction, 2009, 15, 77-87.	2.8	30
80	Activins regulate $17\hat{i}^2$ -hydroxysteroid dehydrogenase type I transcription in murine gonadotrope cells. Journal of Endocrinology, 2009, 201, 89-104.	2.6	9
81	The structure of myostatin:follistatin 288: insights into receptor utilization and heparin binding. EMBO Journal, 2009, 28, 2662-2676.	7.8	148
82	Mono-(2-ethylhexyl) phthalate (MEHP) regulates glucocorticoid metabolism through 11β-hydroxysteroid dehydrogenase 2 in murine gonadotrope cells. Biochemical and Biophysical Research Communications, 2009, 389, 305-309.	2.1	24
83	Novel forms of Paired-like homeodomain transcription factor 2 (PITX2): Generation by alternative translation initiation and mRNA splicing. BMC Molecular Biology, 2008, 9, 31.	3.0	32
84	An Internal Signal Sequence Directs Intramembrane Proteolysis of a Cellular Immunoglobulin Domain Protein. Journal of Biological Chemistry, 2008, 283, 36369-36376.	3.4	35
85	Paired-Like Homeodomain Transcription Factors 1 and 2 Regulate Follicle-Stimulating Hormone β-Subunit Transcription through a Conserved cis-Element. Endocrinology, 2008, 149, 3095-3108.	2.8	35
86	Activator Protein-1 and Smad Proteins Synergistically Regulate Human Follicle-Stimulating Hormone \hat{l}^2 -Promoter Activity. Endocrinology, 2008, 149, 5577-5591.	2.8	81
87	Bone morphogenetic protein 2 and activin A synergistically stimulate follicle-stimulating hormone \hat{l}^2 subunit transcription. Journal of Molecular Endocrinology, 2007, 38, 315-330.	2.5	52
88	Biphasic Effects of Postnatal Exposure to Diethylhexylphthalate on the Timing of Puberty in Male Rats. Journal of Andrology, 2007, 28, 513-520.	2.0	128
89	DIFFERENTIAL EFFECTS OF MONO-(2-ETHYLHEXYL) PHTHALATE (MEHP) ON HYDROXYSTEROID DEHYDROGENASE ACTIVITIES IN PRIMARY RAT LEYDIG CELLS AND IMMORTALIZED GONADOTROPES. Biology of Reproduction, 2007, 77, 74-74.	2.7	0
90	Activin B can signal through both ALK4 and ALK7 in gonadotrope cells. Reproductive Biology and Endocrinology, 2006, 4, 52.	3.3	60

#	Article	IF	CITATIONS
91	Acute regulation of murine follicle-stimulating hormone \hat{l}^2 subunit transcription by activin A. Journal of Molecular Endocrinology, 2006, 36, 201-220.	2.5	66
92	Differential regulation of follicle stimulating hormone by activin A and TGFB1 in murine gonadotropes. Reproductive Biology and Endocrinology, 2005, 3, 73.	3.3	21
93	Both SMAD2 and SMAD3 Mediate Activin-Stimulated Expression of the Follicle-Stimulating Hormone \hat{l}^2 Subunit in Mouse Gonadotrope Cells. Molecular Endocrinology, 2004, 18, 606-623.	3.7	133
94	Seasonal Plasticity in the Song Control System: Multiple Brain Sites of Steroid Hormone Action and the Importance of Variation in Song Behavior. Annals of the New York Academy of Sciences, 2004, 1016, 586-610.	3.8	128
95	Cloning of a novel inhibin alpha cDNA from rhesus monkey testis. Reproductive Biology and Endocrinology, 2004, 2, 71.	3.3	6
96	SMAD Expression in the Testis Predicts Age―and Cellâ€5pecific Responses to Activin and TGFβ. Journal of Andrology, 2003, 24, 201-203.	2.0	3
97	Normal Reproductive Function in InhBP/p120-Deficient Mice. Molecular and Cellular Biology, 2003, 23, 4882-4891.	2.3	38
98	Inhibin Receptor Signaling., 2003,, 297-303.		0
99	Minireview: Inhibin Binding Protein (InhBP/p120), Betaglycan, and the Continuing Search for the Inhibin Receptor. Molecular Endocrinology, 2002, 16, 207-212.	3.7	52
100	Properties of inhibin binding to betaglycan, InhBP/p120 and the activin type II receptors. Molecular and Cellular Endocrinology, 2002, 196, 79-93.	3.2	80
101	An emerging role for co-receptors in inhibin signal transduction. Molecular and Cellular Endocrinology, 2001, 180, 55-62.	3.2	24
102	Gonadal steroid receptor mRNA in catecholaminergic nuclei of the canary brainstem. Neuroscience Letters, 2001, 311, 189-192.	2.1	54
103	Inhibin Binding Protein in Rats: Alternative Transcripts and Regulation in the Pituitary across the Estrous Cycle. Molecular Endocrinology, 2001, 15, 654-667.	3.7	41
104	Genetic Approaches to the Study of Pituitary Follicle-Stimulating Hormone Regulation., 2001,, 297-317.		2
105	Inhibin Binding Protein in Rats: Alternative Transcripts and Regulation in the Pituitary across the Estrous Cycle. Molecular Endocrinology, 2001, 15, 654-667.	3.7	10
106	Structure and Expression of a Membrane Component of the Inhibin Receptor System 1. Endocrinology, 2000, 141, 2600-2607.	2.8	84
107	Differential Regulation of Pituitary Gonadotropin Subunit Messenger Ribonucleic Acid Levels in Photostimulated Siberian Hamsters1. Biology of Reproduction, 2000, 62, 155-161.	2.7	27
108	Structure and Expression of a Membrane Component of the Inhibin Receptor System. Endocrinology, 2000, 141, 2600-2607.	2.8	26

#	Article	IF	CITATIONS
109	Androgen Receptor, Estrogen Receptor \hat{l}_{\pm} , and Estrogen Receptor \hat{l}_{\pm}^2 Show Distinct Patterns of Expression in Forebrain Song Control Nuclei of European Starlings 1. Endocrinology, 1999, 140, 4633-4643.	2.8	174
110	Photoperiodic Effects on Gonadotropin-Releasing Hormone (GnRH) Content and the GnRH-Immunoreactive Neuronal System of Male Siberian Hamsters1. Biology of Reproduction, 1999, 60, 272-276.	2.7	42
111	Steroid Sensitive Sites in the Avian Brain: Does the Distribution of the Estrogen Receptor \hat{l}^{\pm} and \hat{l}^{2} Types Provide Insight into Their Function?. Brain, Behavior and Evolution, 1999, 54, 28-40.	1.7	35
112	Gold-thioglucose-induced hypothalamic lesions inhibit metabolic modulation of light-induced circadian phase shifts in mice. Brain Research, 1999, 824, 18-27.	2.2	5
113	Androgen Receptor, Estrogen Receptor Â, and Estrogen Receptor Show Distinct Patterns of Expression in Forebrain Song Control Nuclei of European Starlings. Endocrinology, 1999, 140, 4633-4643.	2.8	49
114	Lesions of glucose-responsive neurons impair synchronizing effects of calorie restriction in mice. Brain Research, 1998, 801, 244-250.	2.2	12
115	Age-Related Changes in the Photoperiodic Response of Siberian Hamsters 1. Biology of Reproduction, 1997, 57, 172-177.	2.7	19
116	Testis-dependent and -independent effects of photoperiod on volumes of song control nuclei in American tree sparrows (Spizella arborea). Brain Research, 1997, 760, 163-169.	2.2	75
117	Photoperiodic Condition Modulates the Effects of Testosterone on Song Control Nuclei Volumes in Male European Starlings. General and Comparative Endocrinology, 1997, 105, 276-283.	1.8	92
118	Age- and behavior-related variation in volumes of song control nuclei in male European starlings. , 1996, 30, 329-339.		80
119	Auditory discrimination of chord-based spectral structures by European starlings (Sturnus) Tj ETQq1 1 0.784314	rgBT /Ovei	rlock 10 Tf
120	Two histological markers reveal a similar photoperiodic difference in the volume of the high vocal center in male European starlings. Journal of Comparative Neurology, 1995, 360, 726-734.	1.6	73
121	Sex differences in the volume of avian song control nuclei: Comparative studies and the issue of brain nucleus delineation. Psychoneuroendocrinology, 1994, 19, 485-504.	2.7	62
122	Sexual dimorphism in the volume of song control nuclei in European starlings: Assessment by a Nissl stain and autoradiography for muscarinic cholinergic receptors. Journal of Comparative Neurology, 1993, 334, 559-570.	1.6	65
123	Transfer of serial stimulus relations by European starlings (Sturnus vulgaris): Loudness Journal of Experimental Psychology, 1992, 18, 323-334.	1.7	6
124	The orphan ligand, activin C, signals through activin receptor-like kinase 7. ELife, 0, 11, .	6.0	21