Srabani Kar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1748188/publications.pdf

Version: 2024-02-01

623734 677142 33 584 14 22 h-index citations g-index papers 35 35 35 546 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Light-Induced Cellular Delivery and Analysis. , 2022, , 3-30.		1
2	Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials, 2022, 280, 121247.	11.4	35
3	Microfluidic mechanoporation for cellular delivery and analysis. Materials Today Bio, 2022, 13, 100193.	5.5	18
4	Microfluidic platforms for single neuron analysis. Materials Today Bio, 2022, 13, 100222.	5.5	11
5	The physics of terahertz negative photoconductivity in low-dimensional materials. Materials Today Physics, 2022, 23, 100631.	6.0	10
6	Long-Term Stability and Optoelectronic Performance Enhancement of InAsP Nanowires with an Ultrathin InP Passivation Layer. Nano Letters, 2022, 22, 3433-3439.	9.1	3
7	Gold-Polystyrene Core-Shell Hybrid Nanoparticles Mediated Highly Efficient Intracellular Delivery Using Light Pulses. , 2021, , .		O
8	Fabrication of TiO ₂ microspikes for highly efficient intracellular delivery by pulse laser-assisted photoporation. RSC Advances, 2021, 11, 9336-9348.	3.6	18
9	Dirac surface plasmons in photoexcited bismuth telluride nanowires: optical pump-terahertz probe spectroscopy. Nanoscale, 2021, 13, 8283-8292.	5.6	8
10	Light-Induced Cellular Delivery and Analysis. , 2021, , 1-29.		2
11	Pulsed laser assisted high-throughput intracellular delivery in hanging drop based three dimensional cancer spheroids. Analyst, The, 2021, 146, 4756-4766.	3. 5	22
12	Can titanium oxide nanotubes facilitate intracellular delivery by laser-assisted photoporation?. Applied Surface Science, 2021, 543, 148815.	6.1	14
13	Electrochemical fabrication of TiO2 micro-flowers for an efficient intracellular delivery using nanosecond light pulse. Materials Chemistry and Physics, 2021, 267, 124604.	4.0	16
14	Nano-localized single-cell nano-electroporation. Lab on A Chip, 2020, 20, 4194-4204.	6.0	30
15	Infrared Pulse Laser-Activated Highly Efficient Intracellular Delivery Using Titanium Microdish Device. ACS Biomaterials Science and Engineering, 2020, 6, 5645-5652.	5.2	33
16	Near-infrared nanosecond-pulsed laser-activated highly efficient intracellular delivery mediated by nano-corrugated mushroom-shaped gold-coated polystyrene nanoparticles. Nanoscale, 2020, 12, 12057-12067.	5.6	49
17	Physical approaches for drug delivery. , 2020, , 161-190.		18
18	Formation of nanostructures on magnesium alloy by anodization for potential biomedical applications. Materials Today Communications, 2020, 25, 101403.	1.9	10

#	Article	IF	Citations
19	Terahertz Time-Domain Spectroscopy. , 2020, 1, 1-4.		1
20	Nanosecond Pulsed Laser Activated Massively Parallel Single-cell Intracellular Delivery Using Ti Micro-Dish., 2020,,.		0
21	High Charge Carrier Mobilities and Long Diffusion Lengths in Tin Based Metal Halide Perovskite. , 2020, , .		0
22	Enhanced Performance of InAsP Nanowires with Ultra-thin Passivation Layer., 2019,,.		0
23	Terahertz Spectroscopy to Unveil Intraband Scattering in Photoexcited Graphene. , 2019, , .		0
24	Ultrafast terahertz photoresponse of single and double-walled carbon nanotubes: Optical pump-terahertz probe spectroscopy. Carbon, 2019, 144, 731-736.	10.3	19
25	Engineering III–V Nanowires for Optoelectronics: From Visible to Terahertz. , 2019, , .		0
26	Ultrafast Spectral Photoresponse of Bilayer Graphene: Optical Pump–Terahertz Probe Spectroscopy. ACS Nano, 2018, 12, 1785-1792.	14.6	23
27	Single-cell electroporation: current trends, applications and future prospects. Journal of Micromechanics and Microengineering, 2018, 28, 123002.	2.6	54
28	Tunable terahertz photoconductivity of hydrogen functionalized graphene using optical pump-terahertz probe spectroscopy. Nanoscale, 2018, 10, 14321-14330.	5.6	10
29	Probing Photoexcited Carriers in a Few-Layer MoS ₂ Laminate by Time-Resolved Optical Pump–Terahertz Probe Spectroscopy. ACS Nano, 2015, 9, 12004-12010.	14.6	84
30	Tuning photoinduced terahertz conductivity in monolayer graphene: Optical-pump terahertz-probe spectroscopy. Physical Review B, 2014, 90, .	3.2	49
31	Nanolocalized single cell membrane nanoelectroporation. , 2014, , .		1
32	Nanolocalized Single-Cell-Membrane Nanoelectroporation: For higher efficiency with high cell viability IEEE Nanotechnology Magazine, 2014, 8, 30-34.	1.3	14
33	Time resolved terahertz spectroscopy of low frequency electronic resonances and optical pump-induced terahertz photoconductivity in reduced graphene oxide membrane. Carbon, 2014, 80, 762-770.	10.3	19