
Pascal H G Duijf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1747524/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Restoration of miRâ€330 expression suppresses lung cancer cell viability, proliferation, and migration. Journal of Cellular Physiology, 2021, 236, 273-283.	4.1	15
2	The SWI/SNF subunit SMARCD3 regulates cell cycle progression and predicts survival outcome in ER+ breast cancer. Breast Cancer Research and Treatment, 2021, 185, 601-614.	2.5	15
3	HMGA2 as a Critical Regulator in Cancer Development. Genes, 2021, 12, 269.	2.4	91
4	COMMD1, from the Repair of DNA Double Strand Breaks, to a Novel Anti-Cancer Therapeutic Target. Cancers, 2021, 13, 830.	3.7	3
5	miR-34a and miR-200c Have an Additive Tumor-Suppressive Effect on Breast Cancer Cells and Patient Prognosis. Genes, 2021, 12, 267.	2.4	24
6	Clinical use and mechanisms of resistance for PARP inhibitors in homologous recombination-deficient cancers. Translational Oncology, 2021, 14, 101012.	3.7	26
7	Dysregulated G2 phase checkpoint recovery pathway reduces DNA repair efficiency and increases chromosomal instability in a wide range of tumours. Oncogenesis, 2021, 10, 41.	4.9	3
8	Elevating CDCA3 levels in non-small cell lung cancer enhances sensitivity to platinum-based chemotherapy. Communications Biology, 2021, 4, 638.	4.4	12
9	Targeting BRF2 in Cancer Using Repurposed Drugs. Cancers, 2021, 13, 3778.	3.7	8
10	MiR-142-3p targets HMGA2 and suppresses breast cancer malignancy. Life Sciences, 2021, 276, 119431.	4.3	32
11	Elevating CDCA3 Levels Enhances Tyrosine Kinase Inhibitor Sensitivity in TKI-Resistant EGFR Mutant Non-Small-Cell Lung Cancer. Cancers, 2021, 13, 4651.	3.7	5
12	The impact of microRNAs on myeloid-derived suppressor cells in cancer. Human Immunology, 2021, 82, 668-678.	2.4	5
13	The synergy between miR-486–5p and tamoxifen causes profound cell death of tamoxifen-resistant breast cancer cells. Biomedicine and Pharmacotherapy, 2021, 141, 111925.	5.6	6
14	miRâ€330 suppresses EMT and induces apoptosis by downregulating HMGA2 in human colorectal cancer. Journal of Cellular Physiology, 2020, 235, 920-931.	4.1	51
15	Cep55 overexpression promotes genomic instability and tumorigenesis in mice. Communications Biology, 2020, 3, 593.	4.4	17
16	SASH1 is a prognostic indicator and potential therapeutic target in non-small cell lung cancer. Scientific Reports, 2020, 10, 18605.	3.3	16
17	Low Baseline Pulmonary Levels of Cytotoxic Lymphocytes as a Predisposing Risk Factor for Severe COVID-19. MSystems, 2020, 5, .	3.8	9
18	Association of Sperm-Associated Antigen 5 and Treatment Response in Patients With Estrogen Receptor–Positive Breast Cancer, IAMA Network Open, 2020, 3, e209486	5.9	2

PASCAL H G DUIJF

#	Article	IF	CITATIONS
19	Complexities of pharmacogenomic interactions in cancer. Molecular and Cellular Oncology, 2020, 7, 1735910.	0.7	4
20	Overexpression of HMGA2 in breast cancer promotes cell proliferation, migration, invasion and stemness. Expert Opinion on Therapeutic Targets, 2020, 24, 255-265.	3.4	30
21	The role of miRâ€34 in cancer drug resistance. Journal of Cellular Physiology, 2020, 235, 6424-6440.	4.1	18
22	Chromosome arm aneuploidies shape tumour evolution and drug response. Nature Communications, 2020, 11, 449.	12.8	65
23	STAT3 Silencing and TLR7/8 Pathway Activation Repolarize and Suppress Myeloid-Derived Suppressor Cells From Breast Cancer Patients. Frontiers in Immunology, 2020, 11, 613215.	4.8	13
24	Defining COMMD4 as an anti-cancer therapeutic target and prognostic factor in non-small cell lung cancer. British Journal of Cancer, 2020, 123, 591-603.	6.4	13
25	miR-330 Regulates Colorectal Cancer Oncogenesis by Targeting BACH1. Advanced Pharmaceutical Bulletin, 2020, 10, 444-451.	1.4	18
26	MicroRNAs in cancer drug resistance: Basic evidence and clinical applications. Journal of Cellular Physiology, 2019, 234, 2152-2168.	4.1	54
27	Multi-Omics Characterization of the Spontaneous Mesenchymal–Epithelial Transition in the PMC42 Breast Cancer Cell Lines. Journal of Clinical Medicine, 2019, 8, 1253.	2.4	24
28	A functional genetic screen identifies the Mediator complex as essential for SSX2-induced senescence. Cell Death and Disease, 2019, 10, 841.	6.3	4
29	Mechanisms of Genomic Instability in Breast Cancer. Trends in Molecular Medicine, 2019, 25, 595-611.	6.7	109
30	MicroRNAs in cancer cell death pathways: Apoptosis and necroptosis. Free Radical Biology and Medicine, 2019, 139, 1-15.	2.9	128
31	Commonly integrated epigenetic modifications of differentially expressed genes lead to adaptive resistance in cancer. Epigenomics, 2019, 11, 732-737.	2.1	11
32	Interactions between cancer stem cells, immune system and some environmental components: Friends or foes?. Immunology Letters, 2019, 208, 19-29.	2.5	66
33	Patterns of Genomic Instability in Breast Cancer. Trends in Pharmacological Sciences, 2019, 40, 198-211.	8.7	68
34	miRâ€142â€3p is a tumor suppressor that inhibits estrogen receptor expression in ERâ€positive breast cancer. Journal of Cellular Physiology, 2019, 234, 16043-16053.	4.1	41
35	HMGA2 and Bachâ€1 cooperate to promote breast cancer cell malignancy. Journal of Cellular Physiology, 2019, 234, 17714-17726.	4.1	33
36	Mitotic slippage: an old tale with a new twist. Cell Cycle, 2019, 18, 7-15.	2.6	81

3

PASCAL H G DUIJF

#	Article	IF	CITATIONS
37	miRâ€142â€3p as tumor suppressor miRNA in the regulation of tumorigenicity, invasion and migration of human breast cancer by targeting Bachâ€1 expression. Journal of Cellular Physiology, 2019, 234, 9816-9825.	4.1	100
38	Circulating myeloidâ€derived suppressor cells: An independent prognostic factor in patients with breast cancer. Journal of Cellular Physiology, 2019, 234, 3515-3525.	4.1	62
39	Downregulation of miRâ€146a promotes cell migration in Helicobacter pylori –negative gastric cancer. Journal of Cellular Biochemistry, 2019, 120, 9495-9505.	2.6	24
40	microRNAs in cancer stem cells: Biology, pathways, and therapeutic opportunities. Journal of Cellular Physiology, 2019, 234, 10002-10017.	4.1	78
41	Treating cancer with microRNA replacement therapy: A literature review. Journal of Cellular Physiology, 2018, 233, 5574-5588.	4.1	250
42	Heritable DNA methylation marks associated with susceptibility to breast cancer. Nature Communications, 2018, 9, 867.	12.8	76
43	Silencing of BACH1 inhibits invasion and migration of prostate cancer cells by altering metastasis-related gene expression. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1495-1504.	2.8	47
44	Contradictory mRNA and protein misexpression of EEF1A1 in ductal breast carcinoma due to cell cycle regulation and cellular stress. Scientific Reports, 2018, 8, 13904.	3.3	25
45	<scp>CEP</scp> 55 is a determinant of cell fate during perturbed mitosis in breast cancer. EMBO Molecular Medicine, 2018, 10, .	6.9	59
46	Translocation Breakpoints Preferentially Occur in Euchromatin and Acrocentric Chromosomes. Cancers, 2018, 10, 13.	3.7	16
47	Overexpression of the E2F target gene <i>CENPI</i> promotes chromosome instability and predicts poor prognosis in estrogen receptor-positive breast cancer. Oncotarget, 2017, 8, 62167-62182.	1.8	38
48	Overexpression of Ran GTPase Components Regulating Nuclear Export, but not Mitotic Spindle Assembly, Marks Chromosome Instability and Poor Prognosis in Breast Cancer. Targeted Oncology, 2016, 11, 677-686.	3.6	35
49	In vivo overexpression of Emi1 promotes chromosome instability and tumorigenesis. Oncogene, 2016, 35, 5446-5455.	5.9	51
50	In epithelial cancers, aberrant COL17A1 promoter methylation predicts its misexpression and increased invasion. Clinical Epigenetics, 2016, 8, 120.	4.1	76
51	Abstract 3586: Overexpression of Emi1 causes chromosomal instability and cancer. , 2016, , .		0
52	The cancer biology of whole-chromosome instability. Oncogene, 2013, 32, 4727-4736.	5.9	106
53	Cancer cells preferentially lose small chromosomes. International Journal of Cancer, 2013, 132, 2316-2326.	5.1	143
54	Mad2 Is a Critical Mediator of the Chromosome Instability Observed upon Rb and p53 Pathway Inhibition, Cancer Cell, 2011, 19, 701-714.	16.8	162

PASCAL H G DUIJF

#	Article	IF	CITATIONS
55	A novel translation re-initiation mechanism for the p63 gene revealed by amino-terminal truncating mutations in Rapp-Hodgkin/Hay-Wells-like syndromes. Human Molecular Genetics, 2008, 17, 1968-1977.	2.9	53
56	Delineation of the ADULT syndrome phenotype due to arginine 298 mutations of the p63 gene. European Journal of Human Genetics, 2006, 14, 904-910.	2.8	41
57	Ectodermal dysplasia: Skinny models on the catwalk. Drug Discovery Today: Disease Models, 2005, 2, 111-118.	1.2	0
58	Mutations in the Human TBX4 Gene Cause Small Patella Syndrome. American Journal of Human Genetics, 2004, 74, 1239-1248.	6.2	149
59	Pathogenesis of split-hand/split-foot malformation. Human Molecular Genetics, 2003, 12, 51R-60.	2.9	167
60	Gain-of-function mutation in ADULT syndrome reveals the presence of a second transactivation domain in p63. Human Molecular Genetics, 2002, 11, 799-804.	2.9	104
61	A C-Terminal Inhibitory Domain Controls the Activity of p63 by an Intramolecular Mechanism. Molecular and Cellular Biology, 2002, 22, 8601-8611.	2.3	183
62	Complex Transcriptional Effects of p63 Isoforms: Identification of Novel Activation and Repression Domainsâ€. Molecular and Cellular Biology, 2002, 22, 8659-8668.	2.3	224
63	p63 Gene Mutations in EEC Syndrome, Limb-Mammary Syndrome, and Isolated Split Hand–Split Foot Malformation Suggest a Genotype-Phenotype Correlation. American Journal of Human Genetics, 2001, 69, 481-492.	6.2	331
64	Heterozygous Germline Mutations in the p53 Homolog p63 Are the Cause of EEC Syndrome. Cell, 1999, 99, 143-153.	28.9	638