List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1747404/publications.pdf Version: 2024-02-01

		23567	24258
112	31,838	58	110
papers	citations	h-index	g-index
123	123	123	44496
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Systematic Profiling of <i>DNMT3A</i> Variants Reveals Protein Instability Mediated by the DCAF8 E3 Ubiquitin Ligase Adaptor. Cancer Discovery, 2022, 12, 220-235.	9.4	38
2	Emergence and patterning dynamics of mouse-definitive endoderm. IScience, 2022, 25, 103556.	4.1	9
3	DNA methylation: a historical perspective. Trends in Genetics, 2022, 38, 676-707.	6.7	176
4	Acute lymphoblastic leukemia displays a distinct highly methylated genome. Nature Cancer, 2022, 3, 768-782.	13.2	15
5	Single-cell technologies: a new lens into epigenetic regulation in development. Current Opinion in Genetics and Development, 2022, 76, 101947.	3.3	1
6	Preneoplastic Alterations Define CLL DNA Methylome and Persist through Disease Progression and Therapy. Blood Cancer Discovery, 2021, 2, 54-69.	5.0	16
7	Generation of Mouse Pluripotent Stem Cell-derived Trunk-like Structures: An in vitro Model of Post-implantation Embryogenesis. Bio-protocol, 2021, 11, e4042.	0.4	3
8	RLM: fast and simplified extraction of read-level methylation metrics from bisulfite sequencing data. Bioinformatics, 2021, 37, 3934-3935.	4.1	5
9	Cell-specific transcriptional control of mitochondrial metabolism by TIF1γ drives erythropoiesis. Science, 2021, 372, 716-721.	12.6	25
10	Dnmt1 has de novo activity targeted to transposable elements. Nature Structural and Molecular Biology, 2021, 28, 594-603.	8.2	83
11	Smart-RRBS for single-cell methylome and transcriptome analysis. Nature Protocols, 2021, 16, 4004-4030.	12.0	34
12	Topological isolation of developmental regulators in mammalian genomes. Nature Communications, 2021, 12, 4897.	12.8	12
13	Activation of <i>Notch</i> and <i>Myc</i> Signaling via B-cell–Restricted Depletion of <i>Dnmt3a</i> Generates a Consistent Murine Model of Chronic Lymphocytic Leukemia. Cancer Research, 2021, 81, 6117-6130.	0.9	10
14	Diverse epigenetic mechanisms maintain parental imprints within the embryonic and extraembryonic lineages. Developmental Cell, 2021, 56, 2995-3005.e4.	7.0	33
15	Chromatin-state barriers enforce an irreversible mammalian cell fate decision. Cell Reports, 2021, 37, 109967.	6.4	28
16	B Cell-Restricted Depletion of Dnmt3a Activates Notch Signaling and Causes Chronic Lymphocytic Leukemia. Blood, 2021, 138, 249-249.	1.4	0
17	Circadian Entrainment Triggers Maturation of Human InÂVitro Islets. Cell Stem Cell, 2020, 26, 108-122.e10.	11.1	127
18	Epigenetic regulator function through mouse gastrulation. Nature, 2020, 584, 102-108.	27.8	89

#	Article	IF	CITATIONS
19	The road ahead in genetics and genomics. Nature Reviews Genetics, 2020, 21, 581-596.	16.3	118
20	Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science, 2020, 370, .	12.6	193
21	Unblending of Transcriptional Condensates in Human Repeat Expansion Disease. Cell, 2020, 181, 1062-1079.e30.	28.9	115
22	TETs compete with DNMT3 activity in pluripotent cells at thousands of methylated somatic enhancers. Nature Genetics, 2020, 52, 819-827.	21.4	83
23	Netrin-1 promotes naive pluripotency through Neo1 and Unc5b co-regulation of Wnt and MAPK signalling. Nature Cell Biology, 2020, 22, 389-400.	10.3	24
24	Differential DNA methylation of vocal and facial anatomy genes in modern humans. Nature Communications, 2020, 11, 1189.	12.8	69
25	Identification of distinct loci for de novo DNA methylation by DNMT3A and DNMT3B during mammalian development. Nature Communications, 2020, 11, 3199.	12.8	48
26	Integration of Hi-C and Nanopore Sequencing for Structural Variant Analysis in AML with a Complex Karyotype: (Chromothripsis)A². Blood, 2020, 136, 28-28.	1.4	3
27	Robust Discovery of Candidate DNA Methylation Cancer Drivers. Blood, 2020, 136, 33-34.	1.4	0
28	The CLL-1100 Project: Towards Complete Genomic Characterization and Improved Prognostics for CLL. Blood, 2020, 136, 3-4.	1.4	2
29	Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors. Nature Communications, 2019, 10, 3182.	12.8	76
30	Inducible histone K-to-M mutations are dynamic tools to probe the physiological role of site-specific histone methylation in vitro and in vivo. Nature Cell Biology, 2019, 21, 1449-1461.	10.3	40
31	Differential regulation of OCT4 targets facilitates reacquisition of pluripotency. Nature Communications, 2019, 10, 4444.	12.8	2
32	The RNA Helicase DDX6 Controls Cellular Plasticity by Modulating P-Body Homeostasis. Cell Stem Cell, 2019, 25, 622-638.e13.	11.1	82
33	Nanopype: a modular and scalable nanopore data processing pipeline. Bioinformatics, 2019, 35, 4770-4772.	4.1	8
34	Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia. Nature, 2019, 569, 576-580.	27.8	195
35	Molecular recording of mammalian embryogenesis. Nature, 2019, 570, 77-82.	27.8	257
36	Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL. Nature Communications, 2019, 10, 1874.	12.8	63

#	Article	IF	CITATIONS
37	Cross-Regulation between TDP-43 and Paraspeckles Promotes Pluripotency-Differentiation Transition. Molecular Cell, 2019, 74, 951-965.e13.	9.7	85
38	Loss of DNA methyltransferase activity in primed human ES cells triggers increased cell-cell variability and transcriptional repression. Development (Cambridge), 2019, 146, .	2.5	9
39	Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nature Biotechnology, 2019, 37, 1478-1481.	17.5	117
40	Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer's human brains. Nature Neuroscience, 2019, 22, 37-46.	14.8	188
41	In vivo Firre and Dxz4 deletion elucidates roles for autosomal gene regulation. ELife, 2019, 8, .	6.0	18
42	Deciphering the Role of Locally Disordered DNA Methylation on CLL Development In Vivo. Blood, 2019, 134, 1737-1737.	1.4	0
43	A CLK3-HMGA2 Alternative Splicing Axis Impacts Human Hematopoietic Stem Cell Molecular Identity throughout Development. Cell Stem Cell, 2018, 22, 575-588.e7.	11.1	40
44	Cancer-Germline Antigen Expression Discriminates Clinical Outcome to CTLA-4 Blockade. Cell, 2018, 173, 624-633.e8.	28.9	113
45	Zika Virus Alters DNA Methylation of Neural Genes in an Organoid Model of the Developing Human Brain. MSystems, 2018, 3, .	3.8	53
46	Genome-wide tracking of dCas9-methyltransferase footprints. Nature Communications, 2018, 9, 597.	12.8	114
47	Genetic determinants and epigenetic effects of pioneer-factor occupancy. Nature Genetics, 2018, 50, 250-258.	21.4	139
48	X Chromosome Dosage Influences DNA Methylation Dynamics during Reprogramming to Mouse iPSCs. Stem Cell Reports, 2018, 10, 1537-1550.	4.8	39
49	Dissecting the Functional Consequences of De Novo DNA Methylation Dynamics in Human Motor Neuron Differentiation and Physiology. Cell Stem Cell, 2018, 22, 559-574.e9.	11.1	53
50	Global delay in nascent strand DNA methylation. Nature Structural and Molecular Biology, 2018, 25, 327-332.	8.2	56
51	KDM5 Histone Demethylase Activity Links Cellular Transcriptomic Heterogeneity to Therapeutic Resistance. Cancer Cell, 2018, 34, 939-953.e9.	16.8	170
52	Comparative genomic analysis of embryonic, lineage-converted, and stem cell-derived motor neurons. Development (Cambridge), 2018, 145, .	2.5	10
53	Aligning Single-Cell Developmental and Reprogramming Trajectories Identifies Molecular Determinants of Myogenic Reprogramming Outcome. Cell Systems, 2018, 7, 258-268.e3.	6.2	65
54	An Intermediate Pluripotent State Controlled by MicroRNAs Is Required for the Naive-to-Primed Stem Cell Transition. Cell Stem Cell, 2018, 22, 851-864.e5.	11.1	47

#	Article	IF	CITATIONS
55	Prospective Isolation of Poised iPSC Intermediates Reveals Principles of Cellular Reprogramming. Cell Stem Cell, 2018, 23, 289-305.e5.	11.1	60
56	Reduced MEK inhibition preserves genomic stability in naive human embryonic stem cells. Nature Methods, 2018, 15, 732-740.	19.0	74
57	Chromatin-dependent allosteric regulation of DNMT3A activity by MeCP2. Nucleic Acids Research, 2018, 46, 9044-9056.	14.5	34
58	Targets and genomic constraints of ectopic Dnmt3b expression. ELife, 2018, 7, .	6.0	26
59	Induced Pluripotent Stem Cell Differentiation Enables Functional Validation of GWAS Variants in Metabolic Disease. Cell Stem Cell, 2017, 20, 547-557.e7.	11.1	129
60	DUSP9 Modulates DNA Hypomethylation in Female Mouse Pluripotent Stem Cells. Cell Stem Cell, 2017, 20, 706-719.e7.	11.1	63
61	Epigenetic restriction of extraembryonic lineages mirrors the somatic transition to cancer. Nature, 2017, 549, 543-547.	27.8	146
62	Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature, 2017, 548, 219-223.	27.8	211
63	Targeted bisulfite sequencing of the dynamic DNA methylome. Epigenetics and Chromatin, 2016, 9, 55.	3.9	18
64	Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. Cell, 2016, 167, 1310-1322.e17.	28.9	153
65	Transcriptional and Chromatin Dynamics of Muscle Regeneration after Severe Trauma. Stem Cell Reports, 2016, 7, 983-997.	4.8	41
66	Molecular features of cellular reprogramming and development. Nature Reviews Molecular Cell Biology, 2016, 17, 139-154.	37.0	136
67	In vivo Monitoring of Transcriptional Dynamics After Lower-Limb Muscle Injury Enables Quantitative Classification of Healing. Scientific Reports, 2015, 5, 13885.	3.3	21
68	Genetic and Epigenetic Variation, but Not Diet, Shape the Sperm Methylome. Developmental Cell, 2015, 35, 750-758.	7.0	130
69	Age- and Pregnancy-Associated DNA Methylation Changes in Mammary Epithelial Cells. Stem Cell Reports, 2015, 4, 297-311.	4.8	45
70	Enabling Consistency in Pluripotent Stem Cell-Derived Products for Research and Development and Clinical Applications Through Material Standards. Stem Cells Translational Medicine, 2015, 4, 217-223.	3.3	30
71	Integrative analysis of 111 reference human epigenomes. Nature, 2015, 518, 317-330.	27.8	5,653
72	Transcription factor binding dynamics during human ES cell differentiation. Nature, 2015, 518, 344-349.	27.8	318

#	Article	IF	CITATIONS
73	(Epi)Genomics approaches and their applications. Methods, 2015, 72, 1-2.	3.8	2
74	Epigenetic predisposition to reprogramming fates in somatic cells. EMBO Reports, 2015, 16, 370-378.	4.5	21
75	Ground State Conditions Induce Rapid Reorganization of Core Pluripotency Factor Binding before Global Epigenetic Reprogramming. Cell Stem Cell, 2015, 17, 462-470.	11.1	104
76	Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency. Cell, 2015, 162, 412-424.	28.9	206
77	Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nature Genetics, 2015, 47, 469-478.	21.4	409
78	Analysing human neural stem cell ontogeny by consecutive isolation of Notch active neural progenitors. Nature Communications, 2015, 6, 6500.	12.8	73
79	A qPCR ScoreCard quantifies the differentiation potential of human pluripotent stem cells. Nature Biotechnology, 2015, 33, 1182-1192.	17.5	138
80	PRC2 Is Required to Maintain Expression of the Maternal Gtl2-Rian-Mirg Locus by Preventing De Novo DNA Methylation in Mouse Embryonic Stem Cells. Cell Reports, 2015, 12, 1456-1470.	6.4	64
81	Association of DNA methylation in the brain with age in older persons is confounded by common neuropathologies. International Journal of Biochemistry and Cell Biology, 2015, 67, 58-64.	2.8	34
82	Dissecting neural differentiation regulatory networks through epigenetic footprinting. Nature, 2015, 518, 355-359.	27.8	172
83	Coverage recommendations for methylation analysis by whole-genome bisulfite sequencing. Nature Methods, 2015, 12, 230-232.	19.0	248
84	DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nature Communications, 2014, 5, 5592.	12.8	494
85	X Chromosome Reactivation Dynamics Reveal Stages of Reprogramming to Pluripotency. Cell, 2014, 159, 1681-1697.	28.9	97
86	Locally Disordered Methylation Forms the Basis of Intratumor Methylome Variation in Chronic Lymphocytic Leukemia. Cancer Cell, 2014, 26, 813-825.	16.8	323
87	The use of small molecules in somatic-cell reprogramming. Trends in Cell Biology, 2014, 24, 179-187.	7.9	60
88	Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells. Nature Biotechnology, 2014, 32, 1223-1230.	17.5	89
89	DNA methylation dynamics of the human preimplantation embryo. Nature, 2014, 511, 611-615.	27.8	488
90	InÂVivo and InÂVitro Dynamics of Undifferentiated Embryonic Cell Transcription Factor 1. Stem Cell Reports, 2014, 2, 245-252.	4.8	13

#	Article	IF	CITATIONS
91	Proto-Oncogenic Role of Mutant IDH2 in Leukemia Initiation and Maintenance. Cell Stem Cell, 2014, 14, 329-341.	11.1	172
92	Notch inhibition allows oncogene-independent generation of iPS cells. Nature Chemical Biology, 2014, 10, 632-639.	8.0	64
93	Charting a dynamic DNA methylation landscape of the human genome. Nature, 2013, 500, 477-481.	27.8	1,168
94	DNA methylation: roles in mammalian development. Nature Reviews Genetics, 2013, 14, 204-220.	16.3	2,541
95	Transcriptional and Epigenetic Dynamics during Specification of Human Embryonic Stem Cells. Cell, 2013, 153, 1149-1163.	28.9	419
96	The simplest explanation: passive DNA demethylation in PGCs. EMBO Journal, 2013, 32, 318-321.	7.8	18
97	In Vivo Control of CpG and Non-CpG DNA Methylation by DNA Methyltransferases. PLoS Genetics, 2012, 8, e1002750.	3.5	337
98	Gel-free multiplexed reduced representation bisulfite sequencing for large-scale DNA methylation profiling. Genome Biology, 2012, 13, R92.	9.6	244
99	DNA Methylation Dynamics during InÂVivo Differentiation of Blood and Skin Stem Cells. Molecular Cell, 2012, 47, 633-647.	9.7	338
100	A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature, 2012, 484, 339-344.	27.8	860
101	Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Research, 2012, 22, 1128-1138.	5.5	344
102	Dnmt3a is essential for hematopoietic stem cell differentiation. Nature Genetics, 2012, 44, 23-31.	21.4	916
103	Reference Maps of Human ES and iPS Cell Variation Enable High-Throughput Characterization of Pluripotent Cell Lines. Cell, 2011, 144, 439-452.	28.9	899
104	Reprogramming Factor Expression Initiates Widespread Targeted Chromatin Remodeling. Cell Stem Cell, 2011, 8, 96-105.	11.1	345
105	Guiding DNA Methylation. Cell Stem Cell, 2011, 9, 388-390.	11.1	8
106	Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nature Protocols, 2011, 6, 468-481.	12.0	667
107	Epigenetic modifications in pluripotent and differentiated cells. Nature Biotechnology, 2010, 28, 1079-1088.	17.5	331
108	Derivation and Manipulation of Murine Embryonic Stem Cells. Methods in Molecular Biology, 2009, 482, 3-19.	0.9	26

#	Article	IF	CITATIONS
109	Dissecting direct reprogramming through integrative genomic analysis. Nature, 2008, 454, 49-55.	27.8	1,344
110	Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 2008, 454, 766-770.	27.8	2,267
111	Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 2007, 448, 553-560.	27.8	3,733
112	Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Research, 2005, 33, 5868-5877.	14.5	1,050