Andrew N Rider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1747206/publications.pdf

Version: 2024-02-01

55 1,589 23 39
papers citations h-index g-index

55 55 1466
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Zero valence iron nanocube decoration of graphitic nanoplatelets. Nanotechnology, 2022, 33, 025704.	2.6	O
2	3D printed continuous fibre composite repair of sandwich structures. Composite Structures, 2022, 290, 115518.	5.8	6
3	Multifunctional magneto-polymer matrix composites for electromagnetic interference suppression, sensors and actuators. Progress in Materials Science, 2021, 115, 100705.	32.8	58
4	Structural composite supercapacitor using carbon nanotube mat electrodes with interspersed metallic iron nanoparticles. Electrochimica Acta, 2020, 331, 135233.	5.2	23
5	High-performance epoxy-based adhesives modified with functionalized graphene nanoplatelets and triblock copolymers. International Journal of Adhesion and Adhesives, 2020, 98, 102521.	2.9	26
6	Electrophoretic deposition: Novel in situ film growth mechanism of carbon nanocomposite films within non-conductive fabrics for multi-scale hybrid composites. Composites Science and Technology, 2020, 200, 108415.	7.8	12
7	Actuated Dielectric-Lossy Screen for Dynamically Suppressing Electromagnetic Interference. ACS Applied Electronic Materials, 2020, 2, 3923-3935.	4.3	O
8	Improving the actuation performance of magneto-polymer composites by silane functionalisation of carbonyl-iron particles. Composites Part B: Engineering, 2020, 196, 108091.	12.0	16
9	Development of Stable Boron Nitride Nanotube and Hexagonal Boron Nitride Dispersions for Electrophoretic Deposition. Langmuir, 2020, 36, 3425-3438.	3.5	13
10	Synergetic effects of carbon nanotubes and triblock copolymer on the lap shear strength of epoxy adhesive joints. Composites Part B: Engineering, 2019, 178, 107457.	12.0	33
11	Surface Treatment and Repair Bonding. , 2018, , 253-323.		2
12	Tailored glass fiber interphases via electrophoretic deposition of carbon nanotubes: Fiber and interphase characterization. Composites Science and Technology, 2018, 166, 131-139.	7.8	39
13	Triblock Copolymer Toughening of a Carbon Fibre-Reinforced Epoxy Composite for Bonded Repair. Polymers, 2018, 10, 888.	4.5	14
14	6.12 Hierarchical Nanocomposites/Multi-Scale Composites. , 2018, , 352-379.		0
15	Functionalization and Dispersion of Carbon Nanomaterials Using an Environmentally Friendly Ultrasonicated Ozonolysis Process. Journal of Visualized Experiments, 2017, , .	0.3	3
16	A Comparison of Mechanical and Electrical Properties in Hierarchical Composites Prepared using Electrophoretic or Chemical Vapor Deposition of Carbon Nanotubes. MRS Advances, 2016, 1, 785-790.	0.9	9
17	Manipulation of carbon nanotube magnetism with metal-rich iron nanoparticles. Journal of Materials Chemistry C, 2016, 4, 1215-1227.	5.5	7
18	Tailoring Interfacial Properties by Controlling Carbon Nanotube Coating Thickness on Glass Fibers Using Electrophoretic Deposition. ACS Applied Materials & Interfaces, 2016, 8, 1501-1510.	8.0	92

#	Article	IF	Citations
19	Polymer nanocomposite – fiber model interphases: Influence of processing and interface chemistry on mechanical performance. Chemical Engineering Journal, 2015, 269, 121-134.	12.7	55
20	Hierarchical composites with high-volume fractions of carbon nanotubes: Influence of plasma surface treatment and thermoplastic nanophase-modified epoxy. Carbon, 2015, 94, 971-981.	10.3	18
21	Ultrasonicated-ozone modification of exfoliated graphite for stable aqueous graphitic nanoplatelet dispersions. Nanotechnology, 2014, 25, 495607.	2.6	24
22	The influence of mechanical and chemical treatments on the environmental resistance of epoxy adhesive bonds to titanium. International Journal of Adhesion and Adhesives, 2014, 48, 20-27.	2.9	48
23	Evolution of Magnetic and Structural Properties during Iron Plating of Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 13218-13227.	3.1	10
24	On the fatigue durability of clad 7075-T6 aluminium alloy bonded joints representative of aircraft repair. International Journal of Adhesion and Adhesives, 2013, 44, 144-156.	2.9	7
25	Hierarchical Composite Structures Prepared by Electrophoretic Deposition of Carbon Nanotubes onto Glass Fibers. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2022-2032.	8.0	140
26	Surface Treatments and Adhesives for Bonded Repairs to High Temperature Carbon–Bismaleimide Composite Structure. Journal of Adhesion Science and Technology, 2012, 26, 911-937.	2.6	5
27	Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon, 2012, 50, 4130-4143.	10.3	236
28	Long-Term Stability of Metallic Iron inside Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 21083-21087.	3.1	8
29	Impact damage tolerance of composite repairs to highly-loaded, high temperature composite structures. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1321-1334.	7.6	36
30	Residual strength of composite laminates containing scarfed and straight-sided holes. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1951-1961.	7.6	33
31	An Enhanced Vacuum Cure Technique for On-Aircraft Repair of Carbon-Bismaleimide Composites. Applied Composite Materials, 2011, 18, 231-251.	2.5	12
32	Internal resistance heating for homogeneous curing of adhesively bonded repairs. International Journal of Adhesion and Adhesives, 2011, 31, 168-176.	2.9	30
33	Effect of Humidity and Thermal Cycling on Carbon-Epoxy Skin/Aramid Honeycomb Structure. Materials Science Forum, 2010, 654-656, 2600-2603.	0.3	1
34	Bonded repairs for carbon/BMI composite at high operating temperatures. Composites Part A: Applied Science and Manufacturing, 2010, 41, 902-912.	7.6	31
35	Multi-Walled Carbon Nanotubes Grown from Chemical Vapor: Links between Atomic near Range Order and Growth Parameters. Journal of Physical Chemistry C, 2009, 113, 4307-4314.	3.1	10
36	Fatigue Behaviour of Aluminum Bonded Joints as a Function of Wedge Test Performance. Journal of Adhesion Science and Technology, 2009, 23, 555-566.	2.6	2

#	Article	IF	CITATIONS
37	Use of pre-defined architectures for incorporation of aligned carbon nanotubes into epoxy resin. , 2008, , .		O
38	Scaled-up production of multi-walled carbon nanotubes using catalytic chemical vapour deposition. , 2006, , .		0
39	Factors influencing the durability of epoxy adhesion to silane pretreated aluminium. International Journal of Adhesion and Adhesives, 2006, 26, 67-78.	2.9	47
40	The effect of warm water surface treatments on the fatigue life in shear of aluminum joints. International Journal of Adhesion and Adhesives, 2006, 26, 199-205.	2.9	15
41	Analysis of energy release rate for fatigue cracked metal-to-metal double-lap shear joints. International Journal of Adhesion and Adhesives, 2005, 25, 181-191.	2.9	27
42	Theoretical and experimental research into optimal edge taper of bonded repair patches subject to fatigue loadings. International Journal of Adhesion and Adhesives, 2005, 25, 410-426.	2.9	31
43	Hydrated oxide film growth on aluminium alloys immersed in warm water. Surface and Coatings Technology, 2005, 192, 199-207.	4.8	58
44	Surface modification of boron fibres for improved strength in composite materials. Journal of Adhesion Science and Technology, 2005, 19, 857-877.	2.6	7
45	Durability of an off-optimum cured aluminium joint. International Journal of Adhesion and Adhesives, 2004, 24, 95-106.	2.9	24
46	The influence of hydroxyl group concentration on epoxy–aluminium bond durability. Journal of Adhesion Science and Technology, 2004, 18, 1123-1152.	2.6	38
47	Warm water treatment of aluminum for adhesive bonding. International Journal of Adhesion and Adhesives, 2003, 23, 307-313.	2.9	34
48	Toughening boron/epoxy bonded joints using the resin film infusion technique. Composites Part A: Applied Science and Manufacturing, 2003, 34, 341-348.	7.6	11
49	Surface Treatment and Repair Bonding. , 2002, , 41-86.		8
50	Low-power r.f. plasma oxidation of aluminium. Surface and Interface Analysis, 2001, 31, 302-312.	1.8	15
51	The influence of porosity and morphology of hydrated oxide films on epoxy-aluminium bond durability. Journal of Adhesion Science and Technology, 2001, 15, 395-422.	2.6	40
52	Boiling water and silane pre-treatment of aluminium alloys for durable adhesive bonding. International Journal of Adhesion and Adhesives, 2000, 20, 209-220.	2.9	139
53	Influence of Simple Surface Treatments on the Durability of Bonded Aluminium Alloy Plates. Materials Science Forum, 1995, 189-190, 235-240.	0.3	13
54	Electron Microscope Investigations of Thin Adhesive Layers on Adhesive/Metal Interfaces. Materials Science Forum, 1995, 189-190, 229-234.	0.3	1

Andrew N Rider

#	‡ Article	IF	CITATIONS
58	Studies of the degradation of metal-adhesive interfaces with surface analysis technic Surface Science, 1993, 70-71, 109-113.	ques. Applied 6.1	22