Il-Mi Okazaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1746048/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PD-1 agonism by anti-CD80 inhibits T cell activation and alleviates autoimmunity. Nature Immunology, 2022, 23, 399-410.	14.5	36
2	Binding of LAG-3 to stable peptide-MHC class II limits TÂcell function and suppresses autoimmunity and anti-cancer immunity. Immunity, 2022, 55, 912-924.e8.	14.3	59
3	T-cell-intrinsic and -extrinsic regulation of PD-1 function. International Immunology, 2021, 33, 693-698.	4.0	8
4	PD-1 preferentially inhibits the activation of low-affinity T cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
5	PD-1 Imposes Qualitative Control of Cellular Transcriptomes in Response to T Cell Activation. Molecular Cell, 2020, 77, 937-950.e6.	9.7	35
6	LAG-3: from molecular functions to clinical applications. , 2020, 8, e001014.		261
7	PD-1 aborts the activation trajectory of autoreactive CD8+ T cells to prohibit their acquisition of effector functions. Journal of Autoimmunity, 2019, 105, 102296.	6.5	12
8	Restriction of PD-1 function by <i>cis</i> -PD-L1/CD80 interactions is required for optimal T cell responses. Science, 2019, 364, 558-566.	12.6	262
9	PD-1 Primarily Targets TCR Signal in the Inhibition of Functional T Cell Activation. Frontiers in Immunology, 2019, 10, 630.	4.8	112
10	PD-1 efficiently inhibits T cell activation even in the presence of co-stimulation through CD27 and GITR. Biochemical and Biophysical Research Communications, 2019, 511, 491-497.	2.1	7
11	Atypical motifs in the cytoplasmic region of the inhibitory immune co-receptor LAG-3 inhibit T cell activation. Journal of Biological Chemistry, 2019, 294, 6017-6026.	3.4	58
12	Glucocorticoids potentiate the inhibitory capacity of programmed cell death 1 by up-regulating its expression on T cells. Journal of Biological Chemistry, 2019, 294, 19896-19906.	3.4	28
13	Stimulatory and Inhibitory Co-signals in Autoimmunity. Advances in Experimental Medicine and Biology, 2019, 1189, 213-232.	1.6	10
14	Paradoxical development of polymyositis-like autoimmunity through augmented expression of autoimmune regulator (AIRE). Journal of Autoimmunity, 2018, 86, 75-92.	6.5	26
15	LAG-3 inhibits the activation of CD4+ T cells that recognize stable pMHCII through its conformation-dependent recognition of pMHCII. Nature Immunology, 2018, 19, 1415-1426.	14.5	178
16	TRIM28 prevents autoinflammatory T cell development in vivo. Nature Immunology, 2012, 13, 596-603.	14.5	88
17	PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. Journal of Experimental Medicine, 2011, 208, 395-407.	8.5	256
18	Histone chaperone Spt6 is required for class switch recombination but not somatic hypermutation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7920-7925.	7.1	38

IL-ΜΙ ΟΚΑΖΑΚΙ

#	Article	IF	CITATIONS
19	Author's reply: Apex2 is required for efficient somatic hypermutation but not for class switch recombination of immunoglobulin genes. International Immunology, 2010, 22, 213-214.	4.0	0
20	PD-1 deficiency results in the development of fatal myocarditis in MRL mice. International Immunology, 2010, 22, 443-452.	4.0	208
21	Identification of QTLs that modify peripheral neuropathy in NOD.H2b-Pdcd1-/- mice. International Immunology, 2009, 21, 499-509.	4.0	11
22	AID-induced decrease in topoisomerase 1 induces DNA structural alteration and DNA cleavage for class switch recombination. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22375-22380.	7.1	66
23	Molecular mechanism for generation of antibody memory. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 569-575.	4.0	22
24	Apex2 is required for efficient somatic hypermutation but not for class switch recombination of immunoglobulin genes. International Immunology, 2009, 21, 947-955.	4.0	37
25	Organâ€specific profiles of genetic changes in cancers caused by activationâ€induced cytidine deaminase expression. International Journal of Cancer, 2008, 123, 2735-2740.	5.1	80
26	Activation-induced cytidine deaminase (AID) promotes B cell lymphomagenesis in Emu-cmyc transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1616-1620.	7.1	72
27	Role of AID in Tumorigenesis. Advances in Immunology, 2007, 94, 245-273.	2.2	121
28	Expression of activation-induced cytidine deaminase in human hepatocytes during hepatocarcinogenesis. International Journal of Cancer, 2007, 120, 469-476.	5.1	117
29	Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nature Medicine, 2007, 13, 470-476.	30.7	446
30	Regulation of AID Function In Vivo. , 2007, 596, 71-81.		12
31	Negative regulation of activation-induced cytidine deaminase in B cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2752-2757.	7.1	93
32	A target selection of somatic hypermutations is regulated similarly between T and B cells upon activation-induced cytidine deaminase expression. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4506-4511.	7.1	70
33	Constitutive Expression of AID Leads to Tumorigenesis. Journal of Experimental Medicine, 2003, 197, 1173-1181.	8.5	405
34	AID Enzyme-Induced Hypermutation in an Actively Transcribed Gene in Fibroblasts. Science, 2002, 296, 2033-2036.	12.6	345
35	The AID enzyme induces class switch recombination in fibroblasts. Nature, 2002, 416, 340-345.	27.8	240