Jürgen Vitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1744370/publications.pdf

Version: 2024-02-01

		304743	214800
54	2,262	22	47
papers	citations	h-index	g-index
62	62	62	3229
all docs	docs citations	times ranked	citing authors
an does	does citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Regaining Potential: Studies Concerning 2-Ferrocenylethyl Methacrylate, Its Polymers, and Application in Redox Flow Batteries. Macromolecules, 2022, 55, 1576-1589.	4.8	6
2	Well-defined poly(ethylene glycol) polymers as non-conventional reactive tracers of colloidal transport in porous media. Journal of Colloid and Interface Science, 2021, 584, 592-601.	9.4	6
3	Shapeâ€Memory Metallopolymers Based on Two Orthogonal Metal–Ligand Interactions. Advanced Materials, 2021, 33, e2006655.	21.0	31
4	Quantification of the scratch-healing efficiency for novel zwitterionic polymers. NPG Asia Materials, 2020, 12 , .	7.9	23
5	Semiautomated Parallel RAFT Copolymerization of Isoprene with Glycidyl Methacrylate. ACS Combinatorial Science, 2019, 21, 771-781.	3.8	15
6	Poly(n â€alkyl methacrylate)s as Metallocene Catalyst Supports in Nonpolar Media. Macromolecular Chemistry and Physics, 2019, 220, 1900259.	2.2	3
7	Shape-Memory Metallopolymer Networks Based on a Triazole–Pyridine Ligand. Polymers, 2019, 11, 1889.	4.5	7
8	Spherical and Worm‣ike Micelles from Fructoseâ€Functionalized Polyether Block Copolymers. Macromolecular Bioscience, 2018, 18, e1700396.	4.1	7
9	Influence of Aspartate Moieties on the Selfâ∈Healing Behavior of Histidineâ∈Rich Supramolecular Polymers. Macromolecular Rapid Communications, 2018, 39, e1700742.	3.9	8
10	Do You Get What You See? Understanding Molecular Selfâ€Healing. Chemistry - A European Journal, 2018, 24, 2493-2502.	3.3	18
11	A healing ionomer crosslinked by a bis-bidentate halogen bond linker: a route to hard and healable coatings. Polymer Chemistry, 2018, 9, 2193-2197.	3.9	24
12	Remendable polymers via reversible Diels–Alder cycloaddition of anthraceneâ€containing copolymers with fullerenes. Journal of Applied Polymer Science, 2018, 135, 45916.	2.6	15
13	Fast Screening of Diol Impurities in Methoxy Poly(Ethylene Glycol)s (mPEG)s by Liquid Chromatography on Monolithic Silica Rods. Polymers, 2018, 10, 1395.	4.5	10
14	"Green―ethers as solvent alternatives for anionic ring-opening polymerizations of ethylene oxide (EO): In-situ kinetic and advanced characterization studies. Polymer, 2018, 159, 86-94.	3.8	10
15	Macromol. Rapid Commun. 17/2018. Macromolecular Rapid Communications, 2018, 39, 1870041.	3.9	О
16	Palladiumâ€6CS Pincer Complexes as Crossâ€Linking Moieties in Selfâ€Healing Metallopolymers. Macromolecular Rapid Communications, 2018, 39, e1800495.	3.9	9
17	A translation of the structure of mussel byssal threads into synthetic materials by the utilization of histidine-rich block copolymers. Polymer Chemistry, 2018, 9, 3543-3551.	3.9	11
18	Histidine–Zinc Interactions Investigated by Isothermal Titration Calorimetry (ITC) and their Application in Selfâ€Healing Polymers. Macromolecular Chemistry and Physics, 2017, 218, 1600458.	2.2	37

#	Article	IF	CITATIONS
19	Increased stability in selfâ€healing polymer networks based on reversible Michael addition reactions. Journal of Applied Polymer Science, 2017, 134, .	2.6	21
20	Polymeric Halogenâ€Bondâ€Based Donor Systems Showing Selfâ€Healing Behavior in Thin Films. Angewandte Chemie - International Edition, 2017, 56, 4047-4051.	13.8	79
21	Hydrodynamic Analysis Resolves the Pharmaceutically-Relevant Absolute Molar Mass and Solution Properties of Synthetic Poly(ethylene glycol)s Created by Varying Initiation Sites. Analytical Chemistry, 2017, 89, 1185-1193.	6.5	34
22	Intrinsic self-healing polymers with a high E-modulus based on dynamic reversible urea bonds. NPG Asia Materials, 2017, 9, e420-e420.	7.9	97
23	Polymerbasierte Halogenbrückendonoren mit selbstheilenden Eigenschaften in Filmen. Angewandte Chemie, 2017, 129, 4105-4110.	2.0	14
24	Effect of ecosystem type and fire on chemistry of WEOM as measured by LDI-TOF-MS and NMR. Talanta, 2017, 162, 589-596.	5. 5	3
25	Polymerization of ethylene oxide under controlled monomer addition via a mass flow controller for tailor made polyethylene oxides. Polymer Chemistry, 2016, 7, 4063-4071.	3.9	12
26	A Metal Salt Dependent Self-Healing Response in Supramolecular Block Copolymers. Macromolecules, 2016, 49, 8418-8429.	4.8	37
27	Selfâ∈Healing Materials: Acylhydrazones as Reversible Covalent Crosslinkers for Selfâ∈Healing Polymers (Adv. Funct. Mater. 22/2015). Advanced Functional Materials, 2015, 25, 3278-3278.	14.9	4
28	Acylhydrazones as Reversible Covalent Crosslinkers for Selfâ€Healing Polymers. Advanced Functional Materials, 2015, 25, 3295-3301.	14.9	203
29	Self-healing response in supramolecular polymers based on reversible zinc–histidine interactions. Polymer, 2015, 69, 274-282.	3.8	66
30	Biological evaluation of 1,2,3â€triazoleâ€based polymers for potential applications as hard tissue material. Journal of Polymer Science Part A, 2015, 53, 1843-1847.	2.3	8
31	Efficient Cu(I) acetateâ€catalyzed cycloaddition of multifunctional alkynes and azides: From solution to bulk polymerization. Journal of Polymer Science Part A, 2014, 52, 239-247.	2.3	24
32	Metalâ€Free Cycloaddition of Internal Alkynes and Multifunctional Azides Under Solventâ€Free Conditions. Macromolecular Chemistry and Physics, 2014, 215, 1603-1608.	2.2	27
33	Mass spectrometric imaging of synthetic polymers. Analytica Chimica Acta, 2014, 808, 10-17.	5.4	32
34	Precise synthesis of undecenyl poly(ethylene oxide) macromonomers as heterofunctional building blocks for the synthesis of linear diblocks or of branched materials. European Polymer Journal, 2014, 57, 221-236.	5.4	9
35	Oneâ€Component Intrinsic Selfâ€Healing Coatings Based on Reversible Crosslinking by Diels–Alder Cycloadditions. Macromolecular Chemistry and Physics, 2013, 214, 1636-1649.	2.2	128
36	Selfâ€Healing Materials via Reversible Crosslinking of Poly(ethylene oxide)â€ <i>Block</i> â€Poly(furfuryl) Tj ETQc	10 0 0 rgB1 14.9	「/Overlock 10 107

4921-4932.

#	Article	IF	CITATIONS
37	Photoinduced polyaddition of multifunctional azides and alkynes. Polymer Chemistry, 2013, 4, 3938.	3.9	37
38	Self-healing metallopolymers based on cadmium bis(terpyridine) complex containing polymer networks. Polymer Chemistry, 2013, 4, 4966.	3.9	119
39	Application of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Imaging for Photolithographic Structuring. Analytical Chemistry, 2012, 84, 6921-6925.	6.5	12
40	Macromonomers as Wellâ€Defined Building Blocks in the Synthesis of Hybrid Octafunctional Starâ€Shaped Poly(ethylene oxide)s. Macromolecular Chemistry and Physics, 2012, 213, 2181-2191.	2.2	10
41	Bisâ€hydrophilic and functional triblock terpolymers based on polyethers: Synthesis and selfâ€assembly in solution. Journal of Polymer Science Part A, 2012, 50, 2914-2923.	2.3	15
42	Recent developments in the utilization of green solvents in polymer chemistry. Chemical Society Reviews, 2010, 39, 3317.	38.1	187
43	Complexation of Terpyridineâ€Containing Dextrans: Toward Waterâ€Soluble Supramolecular Structures. Macromolecular Rapid Communications, 2010, 31, 921-927.	3.9	10
44	Cellulose molecular properties in 1-alkyl-3-methylimidazolium-based ionic liquid mixtures with pyridine. Carbohydrate Polymers, 2010, 82, 1046-1053.	10.2	11
45	Microwave-assisted synthesis of imidazolium ionenes and their application as humidity absorbers. Journal of Materials Chemistry, 2010, 20, 3583.	6.7	17
46	Imidazolium Based Ionic Liquids as Solvents for Cellulose Chemistry. ACS Symposium Series, 2010, , 299-317.	0.5	12
47	Stille Crossâ€Coupling Reactions with Tin Reagents Supported on Ionic Liquids. European Journal of Organic Chemistry, 2009, 2009, 3249-3257.	2.4	24
48	Molecular solutions of cellulose in mixtures of ionic liquids with pyridine. Russian Journal of Applied Chemistry, 2009, 82, 666-672.	0.5	15
49	Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chemistry, 2009, 11, 417.	9.0	406
50	Influence of different branched alkyl side chains on the properties of imidazolium-based ionic liquids. Journal of Materials Chemistry, 2008, 18, 5267.	6.7	118
51	Ionic liquid supported tin reagents for Stille cross coupling reactions. Green Chemistry, 2007, 9, 431.	9.0	40
52	Total Synthesis ofrac-γ-Indomycinone by Baker–Venkataraman Rearrangement. European Journal of Organic Chemistry, 2007, 2007, 1905-1911.	2.4	16
53	First enantiospecific Baker–Venkataraman-rearrangements aiming at the total synthesis of chiral anthrapyran antibiotics. Tetrahedron: Asymmetry, 2006, 17, 3051-3057.	1.8	15
54	Total Synthesis of Premithramycinone H and Related Anthrapyran Antibiotics. European Journal of Organic Chemistry, 2004, 2004, 209-219.	2.4	38