
Alfred S Mcewen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1743288/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiband photometry of Martian Recurring Slope Lineae (RSL) and dust-removed features at Horowitz crater, Mars from TGO/CaSSIS color observations. Planetary and Space Science, 2022, 214, 105443.	1.7	8
2	Revealing Active Mars with HiRISE Digital Terrain Models. Remote Sensing, 2022, 14, 2403.	4.0	11
3	Widespread Exposures of Extensive Clean Shallow Ice in the Midlatitudes of Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006617.	3.6	29
4	Mars: Abundant Recurring Slope Lineae (RSL) Following the Planetâ€Encircling Dust Event (PEDE) of 2018. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006575.	3.6	21
5	Modern Mars' geomorphological activity, driven by wind, frost, and gravity. Geomorphology, 2021, 380, 107627.	2.6	40
6	Active Mars: A Dynamic World. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006876.	3.6	17
7	A Preliminary Regional Geomorphologic Map in Utopia Planitia of the Tianwenâ€1 Zhurong Landing Region. Geophysical Research Letters, 2021, 48, e2021GL094629.	4.0	14
8	CaSSIS color and multi-angular observations of Martian slope streaks. Planetary and Space Science, 2021, 209, 105373.	1.7	6
9	Present-day mass wasting in sulfate-rich sediments in the equatorial regions of Mars. Icarus, 2020, 342, 113566.	2.5	11
10	Implications for the origin and evolution of Martian Recurring Slope Lineae at Hale crater from CaSSIS observations. Planetary and Space Science, 2020, 187, 104947.	1.7	28
11	A case study of recurring slope lineae (RSL) at Tivat crater: Implications for RSL origins. Icarus, 2019, 317, 621-648.	2.5	32
12	Subsurface Cl-bearing salts as potential contributors to recurring slope lineae (RSL) on Mars. Icarus, 2019, 333, 464-480.	2.5	24
13	The formation of gullies on Mars today. Geological Society Special Publication, 2019, 467, 67-94.	1.3	45
14	Image Simulation and Assessment of the Colour and Spatial Capabilities of the Colour and Stereo Surface Imaging System (CaSSIS) on the ExoMars Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	8.1	24
15	Exposed subsurface ice sheets in the Martian mid-latitudes. Science, 2018, 359, 199-201.	12.6	174
16	Are Recurring Slope Lineae Habitable?. , 2018, , 249-274.		5
17	Seasonal Slumps in Juventae Chasma, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 2193-2214.	3.6	14
18	Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water. Nature Geoscience, 2017, 10, 903-907.	12.9	96

ALFRED S MCEWEN

#	Article	IF	CITATIONS
19	Changes in blast zone albedo patterns around new martian impact craters. Icarus, 2016, 267, 86-105.	2.5	49
20	A new study of crater concentric ridges on the Moon. Icarus, 2016, 273, 196-204.	2.5	4
21	Geologic context of recurring slope lineae in Melas and Coprates Chasmata, Mars. Journal of Geophysical Research E: Planets, 2016, 121, 1204-1231.	3.6	56
22	Slope activity in Gale crater, Mars. Icarus, 2015, 254, 213-218.	2.5	19
23	Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nature Geoscience, 2015, 8, 829-832.	12.9	513
24	Long-term monitoring of martian gully formation and evolution with MRO/HiRISE. Icarus, 2015, 251, 244-263.	2.5	141
25	Expanded secondary craters in the Arcadia Planitia region, Mars: Evidence for tens of Myr-old shallow subsurface ice. Icarus, 2015, 248, 190-204.	2.5	49
26	Recurring slope lineae in equatorial regions of Mars. Nature Geoscience, 2014, 7, 53-58.	12.9	248
27	HiRISE observations of Recurring Slope Lineae (RSL) during southern summer on Mars. Icarus, 2014, 231, 365-376.	2.5	90
28	A New Analysis of Mars "Special Regionsâ€ŧ Findings of the Second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology, 2014, 14, 887-968.	3.0	317
29	HiRISE observations of new impact craters exposing Martian ground ice. Journal of Geophysical Research E: Planets, 2014, 119, 109-127.	3.6	98
30	A new dry hypothesis for the formation of martian linear gullies. Icarus, 2013, 225, 526-537.	2.5	132
31	Avalanche slope angles in lowâ€gravity environments from active Martian sand dunes. Geophysical Research Letters, 2013, 40, 2929-2934.	4.0	69
32	Spectral constraints on the formation mechanism of recurring slope lineae. Geophysical Research Letters, 2013, 40, 5621-5626.	4.0	33
33	Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process. Icarus, 2012, 220, 348-368.	2.5	85
34	Seasonal activity and morphological changes in martian gullies. Icarus, 2012, 220, 124-143.	2.5	195
35	Seasonal Flows on Warm Martian Slopes. Science, 2011, 333, 740-743.	12.6	451
36	Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris. Icarus, 2010, 205, 73-102.	2.5	79

ALFRED S MCEWEN

#	Article	IF	CITATIONS
37	The High Resolution Imaging Science Experiment (HiRISE) during MRO's Primary Science Phase (PSP). Icarus, 2010, 205, 2-37.	2.5	153
38	Hydrovolcanic features on Mars: Preliminary observations from the first Mars year of HiRISE imaging. Icarus, 2010, 205, 211-229.	2.5	78
39	Color imaging of Mars by the High Resolution Imaging Science Experiment (HiRISE). Icarus, 2010, 205, 38-52.	2.5	89
40	Aeolian bedforms, yardangs, and indurated surfaces in the Tharsis Montes as seen by the HiRISE Camera: Evidence for dust aggregates. Icarus, 2010, 205, 165-182.	2.5	80
41	Investigating gully flow emplacement mechanisms using apex slopes. Icarus, 2010, 208, 132-142.	2.5	29
42	Seasonality of present-day Martian dune-gully activity. Geology, 2010, 38, 1047-1050.	4.4	104
43	New and recent gully activity on Mars as seen by HiRISE. Geophysical Research Letters, 2010, 37, .	4.0	105
44	Crater population and resurfacing of the Martian north polar layered deposits. Journal of Geophysical Research, 2010, 115, .	3.3	48
45	Role of material properties in the cratering record of young platyâ€ridged lava on Mars. Geophysical Research Letters, 2010, 37, .	4.0	52
46	Seasonally active frostâ€dust avalanches on a north polar scarp of Mars captured by HiRISE. Geophysical Research Letters, 2008, 35, .	4.0	48
47	Recent bright gully deposits on Mars: Wet or dry flow?. Geology, 2008, 36, 211.	4.4	124
48	Mapping rays and secondary craters from the Martian crater Zunil. Journal of Geophysical Research, 2007, 112, .	3.3	57
49	Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research, 2007, 112, .	3.3	1,253
50	HiRISE observations of slope streaks on Mars. Geophysical Research Letters, 2007, 34, .	4.0	100
51	Rays and secondary craters of Tycho. Icarus, 2007, 186, 31-40.	2.5	53
52	Identification of large (2–10 km) rayed craters on Mars in THEMIS thermal infrared images: Implications for possible Martian meteorite source regions. Journal of Geophysical Research, 2006, 111,	3.3	98
53	THE IMPORTANCE OF SECONDARY CRATERING TO AGE CONSTRAINTS ON PLANETARY SURFACES. Annual Review of Earth and Planetary Sciences, 2006, 34, 535-567.	11.0	228
54	The rayed crater Zunil and interpretations of small impact craters on Mars. Icarus, 2005, 176, 351-381.	2.5	335

ALFRED S MCEWEN

#	Article	IF	CITATIONS
55	HiRISE focal plane for use on the Mars Reconnaissance Orbiter. , 2004, , .		5
56	PLANETARY SCIENCE: Active Volcanism on Io. Science, 2002, 297, 2220-2221.	12.6	13
57	Introduction to the Special Section: Geology and Geophysics of Io. Journal of Geophysical Research, 2001, 106, 32959-32961.	3.3	5
58	lo's Thermal Emission from the Galileo Photopolarimeter- Radiometer. Science, 2000, 288, 1198-1201.	12.6	123
59	Global Color Variations on Io. Icarus, 1999, 140, 265-282.	2.5	111
60	Active Volcanism on Io: Global Distribution and Variations in Activity. Icarus, 1999, 140, 243-264.	2.5	128
61	Magmatic Differentiation of Io. Icarus, 1997, 130, 437-448.	2.5	63