
Margarida F Costa Gomes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1742975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of Ionic Liquids for Fluorinated Gas Absorption: COSMO-RS Selection and Solubility Experiments. Environmental Science & amp; Technology, 2022, 56, 5898-5909.	4.6	23
2	Enhancement of the solubility of organic dyes in aqueous ionic solvents doped with surfactants. Journal of Molecular Liquids, 2022, 357, 118958.	2.3	4
3	Deep eutectic solvents as absorbents for VOC and VOC mixtures in static and dynamic processes. Chemical Engineering Journal, 2022, 448, 137619.	6.6	25
4	Connecting chloride solvation with hydration in deep eutectic systems. Physical Chemistry Chemical Physics, 2021, 23, 107-111.	1.3	37
5	Integrated, one-pot carbon capture and utilisation using porous ionic liquids. Chemical Communications, 2021, 57, 7922-7925.	2.2	23
6	Improved carbon dioxide absorption in double-charged ionic liquids. Physical Chemistry Chemical Physics, 2021, 23, 23130-23140.	1.3	8
7	Mixing divalent ionic liquids: effects of charge and side-chains. Physical Chemistry Chemical Physics, 2021, 23, 4624-4635.	1.3	7
8	Extension of the CL&Pol Polarizable Force Field to Electrolytes, Protic Ionic Liquids, and Deep Eutectic Solvents. Journal of Chemical Theory and Computation, 2021, 17, 1606-1617.	2.3	56
9	Porous Ionic Liquids: Structure, Stability, and Gas Absorption Mechanisms. Advanced Materials Interfaces, 2021, 8, 2001982.	1.9	32
10	Highâ€Performance Porous Ionic Liquids for Lowâ€Pressure CO ₂ Capture**. Angewandte Chemie, 2021, 133, 12986-12992.	1.6	6
11	Highâ€Performance Porous Ionic Liquids for Lowâ€Pressure CO ₂ Capture**. Angewandte Chemie - International Edition, 2021, 60, 12876-12882.	7.2	63
12	Screening Ionic Solvents for Enhancing the Solubility of Water-Insoluble Natural Dyes. Industrial & Engineering Chemistry Research, 2021, 60, 8555-8564.	1.8	5
13	Tuning the solvation of indigo in aqueous deep eutectics. Journal of Chemical Physics, 2021, 154, 224502.	1.2	10
14	Systematic Comparison of the Structural and Dynamic Properties of Commonly Used Water Models for Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2021, 61, 4521-4536.	2.5	94
15	lon pair free energy surface as a probe of ionic liquid structure. Journal of Chemical Physics, 2020, 152, 014103.	1.2	7
16	Sodium diffusion in ionic liquid-based electrolytes for Na-ion batteries: the effect of polarizable force fields. Physical Chemistry Chemical Physics, 2020, 22, 20114-20122.	1.3	13
17	Process Evaluation of Fluorinated Ionic Liquids as F-Gas Absorbents. Environmental Science & Technology, 2020, 54, 12784-12794.	4.6	28
18	Probing the Reorganization of Ionic Liquids' Structure Induced by CO ₂ Sorption. ChemPhysChem, 2020, 21, 1230-1234.	1.0	3

Margarida F Costa Gomes

#	Article	IF	CITATIONS
19	New generation of supramolecular mixtures: Characterization and solubilization studies. International Journal of Pharmaceutics, 2020, 584, 119443.	2.6	30
20	Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces. Nature Materials, 2019, 18, 1350-1357.	13.3	144
21	On the Regular Behavior of a Binary Mixture of Ionic Liquids. Journal of Physical Chemistry B, 2019, 123, 6579-6587.	1.2	13
22	Do Cyclodextrins Encapsulate Volatiles in Deep Eutectic Systems?. ACS Sustainable Chemistry and Engineering, 2019, 7, 17397-17405.	3.2	26
23	Ionic Liquids Can Enable the Recycling of Fluorinated Greenhouse Gases. ACS Sustainable Chemistry and Engineering, 2019, 7, 16900-16906.	3.2	47
24	Transferable, Polarizable Force Field for Ionic Liquids. Journal of Chemical Theory and Computation, 2019, 15, 5858-5871.	2.3	108
25	Using Thermodynamics to Assess the Molecular Interactions of Tetrabutylphosphonium Carboxylate–Water Mixtures. Australian Journal of Chemistry, 2019, 72, 144.	0.5	3
26	Effect of Water on Deep Eutectic Solvent/β-Cyclodextrin Systems. ACS Sustainable Chemistry and Engineering, 2019, 7, 7277-7285.	3.2	52
27	Dispersion and Stabilization of Exfoliated Graphene in Ionic Liquids. Frontiers in Chemistry, 2019, 7, 223.	1.8	35
28	Using hydrogenated and perfluorinated gases to probe the interactions and structure of fluorinated ionic liquids. Physical Chemistry Chemical Physics, 2019, 21, 8865-8873.	1.3	18
29	First Evidence of Cyclodextrin Inclusion Complexes in a Deep Eutectic Solvent. ACS Sustainable Chemistry and Engineering, 2019, 7, 6345-6351.	3.2	41
30	Influence of Ionic Liquids on the Morphology of Corn Flour/Polyester Mixtures. Starch/Staerke, 2018, 70, 1700233.	1.1	2
31	Molecular dynamics simulations of polyethers and a quaternary ammonium ionic liquid as CO2 absorbers. Journal of Chemical Physics, 2018, 148, 134908.	1.2	13
32	lonic liquids at the surface of graphite: Wettability and structure. Journal of Chemical Physics, 2018, 148, 193840.	1.2	37
33	Improvement of carbon dioxide absorption by mixing poly(ethylene glycol) dimethyl ether with ammonium-based ionic liquids. Separation and Purification Technology, 2018, 196, 10-19.	3.9	24
34	Structure and dynamics of ionic liquids: general discussion. Faraday Discussions, 2018, 206, 291-337.	1.6	8
35	Ionic liquids at interfaces: general discussion. Faraday Discussions, 2018, 206, 549-586.	1.6	0
36	Porous Ionic Liquids or Liquid Metal–Organic Frameworks?. Angewandte Chemie - International Edition, 2018, 57, 11909-11912.	7.2	124

3

#	Article	IF	CITATIONS
37	Porous Ionic Liquids or Liquid Metal–Organic Frameworks?. Angewandte Chemie, 2018, 130, 12085-12088.	1.6	32
38	Can the tricyanomethanide anion improve CO ₂ absorption by acetate-based ionic liquids?. Physical Chemistry Chemical Physics, 2017, 19, 12431-12440.	1.3	26
39	Influence of Fluorination on the Solubilities of Carbon Dioxide, Ethane, and Nitrogen in 1-‹i›n‹/i›-Fluoro-alkyl-3-methylimidazolium Bis(‹i›n‹/i›-fluoroalkylsulfonyl)amide Ionic Liquids. Journal of Physical Chemistry B, 2017, 121, 426-436.	1.2	44
40	Polycyclic aromatic hydrocarbons as model solutes for carbon nanomaterials in ionic liquids. Physical Chemistry Chemical Physics, 2017, 19, 27694-27703.	1.3	11
41	Experimental Study of the Interactions of Fullerene with Ionic Liquids. ACS Symposium Series, 2017, , 273-281.	0.5	1
42	Deep eutectic solvents as green absorbents of volatile organic pollutants. Environmental Chemistry Letters, 2017, 15, 747-753.	8.3	66
43	How Does the Addition of a Third Ion Affect the Molecular Interactions and the Thermodynamic Properties of Acetate-Based Ionic Liquids?. Journal of Physical Chemistry B, 2017, 121, 9725-9736.	1.2	13
44	Phase behaviour and thermodynamics: general discussion. Faraday Discussions, 2017, 206, 113-139.	1.6	8
45	Gaseous Hydrocarbon Separations Using Functionalized Ionic Liquids. Oil and Gas Science and Technology, 2016, 71, 23.	1.4	14
46	Mixing Enthalpy for Binary Mixtures Containing Ionic Liquids. Chemical Reviews, 2016, 116, 6075-6106.	23.0	85
47	Solvation of C ₆₀ Fullerene and C ₆₀ F ₄₈ Fluorinated Fullerene in Molecular and Ionic Liquids. Journal of Physical Chemistry C, 2016, 120, 19396-19408.	1.5	11
48	Tailoring the properties of acetate-based ionic liquids using the tricyanomethanide anion. Physical Chemistry Chemical Physics, 2016, 18, 23285-23295.	1.3	28
49	Isobutane as a probe of the structure of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. Journal of Chemical Thermodynamics, 2015, 89, 98-103.	1.0	9
50	Effect of Nitrile-Functionalization of Imidazolium-Based Ionic Liquids on Their Transport Properties, Both Pure and Mixed with Lithium Salts. Journal of Solution Chemistry, 2015, 44, 495-510.	0.6	10
51	Thermodynamics of cellulose dissolution in an imidazolium acetate ionic liquid. Chemical Communications, 2015, 51, 4485-4487.	2.2	47
52	Preliminary study on suitability of ionic liquids as potential passive-sampling media of polyaromatic-hydrocarbon (PAH) analyses in water. Analytical and Bioanalytical Chemistry, 2015, 407, 3531-3536.	1.9	8
53	Solubility of n-butane and 2-methylpropane (isobutane) in 1-alkyl-3-methylimidazolium-based ionic liquids with linear and branched alkyl side-chains. Physical Chemistry Chemical Physics, 2015, 17, 30328-30342.	1.3	14
54	Imidazolium-based ionic liquids with cyano groups for the selective absorption of ethane and ethylene. Chemical Engineering Journal, 2015, 280, 755-762.	6.6	47

#	Article	IF	CITATIONS
55	Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids. Journal of Chemical Physics, 2015, 143, 064503.	1.2	40
56	Liquids with permanent porosity. Nature, 2015, 527, 216-220.	13.7	402
57	When can ionic liquids be considered readily biodegradable? Biodegradation pathways of pyridinium, pyrrolidinium and ammonium-based ionic liquids. Green Chemistry, 2015, 17, 1479-1491.	4.6	61
58	Solvation of a Cellulose Microfibril in Imidazolium Acetate Ionic Liquids: Effect of a Cosolvent. Journal of Physical Chemistry B, 2014, 118, 141211094045002.	1.2	39
59	Glass transition of ionic liquids under high pressure. Journal of Chemical Physics, 2014, 140, 244514.	1.2	37
60	Interactions and structure of ionic liquids on graphene and carbon nanotubes surfaces. RSC Advances, 2014, 4, 18017-18024.	1.7	65
61	Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. Green Chemistry, 2014, 16, 2528.	4.6	231
62	High-Pressure Densities of 2,2,2-Trifluoroethanol + Ionic Liquid Mixtures Useful for Possible Applications in Absorption Cycles. Industrial & Engineering Chemistry Research, 2014, 53, 10791-10802.	1.8	29
63	Absorption of carbon dioxide by ionic liquids with carboxylate anions. International Journal of Greenhouse Gas Control, 2013, 17, 78-88.	2.3	57
64	Selectivity enhancement in the aqueous acid-catalyzed conversion of glucose to 5-hydroxymethylfurfural induced by choline chloride. Green Chemistry, 2013, 15, 3205.	4.6	74
65	Solubility of carbon dioxide, nitrous oxide, ethane, and nitrogen in 1-butyl-1-methylpyrrolidinium and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate (eFAP) ionic liquids. Journal of Chemical Thermodynamics, 2013, 59, 65-71.	1.0	79
66	Preparation of microfibers from wood/ionic liquid solutions. Carbohydrate Polymers, 2013, 92, 214-217.	5.1	24
67	Effect of Unsaturation on the Absorption of Ethane and Ethylene in Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry B, 2013, 117, 7416-7425.	1.2	36
68	Interaction Energies of Ionic Liquids with Metallic Nanoparticles: Solvation and Stabilization Effects. Journal of Physical Chemistry C, 2013, 117, 3537-3547.	1.5	53
69	Pressure effect on vibrational frequency and dephasing of 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids. Journal of Chemical Physics, 2013, 139, 054510.	1.2	15
70	Using ethane and butane as probes to the molecular structure of 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ionic liquids. Faraday Discussions, 2012, 154, 41-52.	1.6	38
71	Effect of Water on the Carbon Dioxide Absorption by 1-Alkyl-3-methylimidazolium Acetate Ionic Liquids. Journal of Physical Chemistry B, 2012, 116, 14416-14425.	1.2	111
72	Ligand effect on the catalytic activity of ruthenium nanoparticles in ionic liquids. Dalton Transactions, 2012, 41, 13919.	1.6	19

#	Article	IF	CITATIONS
73	Direct measurement of the heat of solution and solubility of carbon dioxide in 1-hexyl-3-methylimidazolium bis[trifluoromethylsulfonyl]amide and 1-octyl-3-methylimidazolium bis[trifluoromethylsulfonyl]amide. International Journal of Greenhouse Gas Control, 2012, 10, 329-340.	2.3	23
74	Absorption of Carbon Dioxide, Nitrous Oxide, Ethane and Nitrogen by 1-Alkyl-3-methylimidazolium (C _{<i>n</i>} mim, <i>n</i> = 2,4,6) Tris(pentafluoroethyl)trifluorophosphate Ionic Liquids (eFAP). Journal of Physical Chemistry B, 2012, 116, 7728-7738.	1.2	95
75	Glycine in 1â€Butylâ€3â€Methylimidazolium Acetate and Trifluoroacetate Ionic Liquids: Effect of Fluorination and Hydrogen Bonding. ChemPhysChem, 2012, 13, 1753-1763.	1.0	18
76	Phase Behaviour, Interactions, and Structural Studies of (Amines+Ionic Liquids) Binary Mixtures. ChemPhysChem, 2012, 13, 1825-1835.	1.0	24
77	Relevant parameters for assessing the environmental impact of some pyridinium, ammonium and pyrrolidinium based ionic liquids. Chemosphere, 2012, 89, 327-333.	4.2	27
78	Ruthenium nanoparticles in ionic liquids: structural and stability effects of polar solutes. Physical Chemistry Chemical Physics, 2011, 13, 13527.	1.3	42
79	Influence of Ionic Association, Transport Properties, and Solvation on the Catalytic Hydrogenation of 1,3-Cyclohexadiene in Ionic Liquids. Journal of Physical Chemistry B, 2011, 115, 12150-12159.	1.2	18
80	Polarity, Viscosity, and Ionic Conductivity of Liquid Mixtures Containing [C ₄ C ₁ im][Ntf ₂] and a Molecular Component. Journal of Physical Chemistry B, 2011, 115, 6088-6099.	1.2	154
81	Influence of an Oxygen Functionalization on the Physicochemical Properties of Ionic Liquids: Density, Viscosity, and Carbon Dioxide Solubility as a Function of Temperature. Journal of Chemical & Engineering Data, 2011, 56, 4194-4202.	1.0	53
82	Influence of Ester Functional Groups on the Liquid-Phase Structure and Solvation Properties of Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry B, 2011, 115, 3942-3948.	1.2	30
83	Effect of alkyl chain length and hydroxyl group functionalization on the surface properties of imidazolium ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 13518.	1.3	81
84	Influence of oxygen functionalities on the environmental impact of imidazolium based ionic liquids. Journal of Hazardous Materials, 2011, 198, 165-174.	6.5	66
85	Characteristics of aggregation in aqueous solutions of dialkylpyrrolidinium bromides. Journal of Colloid and Interface Science, 2011, 360, 606-616.	5.0	36
86	Volumetric properties and enthalpies of solution of alcohols CkH2k+1OH (k=1, 2, 6) in 1-methyl-3-alkylimidazolium bis(trifluoromethylsulfonyl)imide {[C1CnIm][NTf2] n=2, 4, 6, 8, 10} ionic liquids. Journal of Chemical Thermodynamics, 2011, 43, 1708-1718.	1.0	31
87	Ionic Liquids: Promising Media for Gas Separations. ACS Symposium Series, 2010, , 223-237.	0.5	7
88	Three commentaries on the nano-segregated structure of ionic liquids. Computational and Theoretical Chemistry, 2010, 946, 70-76.	1.5	156
89	Olefin hydrogenation by ruthenium nanoparticles in ionic liquid media: Does size matter?. Journal of Catalysis, 2010, 275, 99-107.	3.1	60
90	The Presence of Functional Groups Key for Biodegradation in Ionic Liquids: Effect on Gas Solubility. ChemSusChem, 2010, 3, 377-385.	3.6	53

#	Article	IF	CITATIONS
91	Influence of water on the carbon dioxide absorption by 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide. Fluid Phase Equilibria, 2010, 294, 98-104.	1.4	49
92	Assessing the Dispersive and Electrostatic Components of the Cohesive Energy of Ionic Liquids Using Molecular Dynamics Simulations and Molar Refraction Data. Journal of Physical Chemistry B, 2010, 114, 5831-5834.	1.2	89
93	Solubility of alkanes, alkanols and their fluorinated counterparts in tetraalkylphosphonium ionic liquids. Physical Chemistry Chemical Physics, 2010, 12, 9685.	1.3	44
94	Calorimetric and Volumetric Study on Binary Mixtures 2,2,2-Trifluoroethanol + (1-Butyl-3-methylimidazolium Tetrafluoroborate or 1-Ethyl-3-methylimidazolium Tetrafluoroborate). Journal of Chemical & Engineering Data, 2010, 55, 5504-5512.	1.0	43
95	Effect of Fluorination and Size of the Alkyl Side-Chain on the Solubility of Carbon Dioxide in 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide Ionic Liquids. Journal of Physical Chemistry B, 2010, 114, 3608-3617.	1.2	159
96	How do Physicalâ^'Chemical Parameters Influence the Catalytic Hydrogenation of 1,3-Cyclohexadiene in Ionic Liquids?. Journal of Physical Chemistry B, 2010, 114, 8156-8165.	1.2	31
97	Molecular Force Field for Ionic Liquids V: Hydroxyethylimidazolium, Dimethoxy-2- Methylimidazolium, and Fluoroalkylimidazolium Cations and Bis(Fluorosulfonyl)Amide, Perfluoroalkanesulfonylamide, and Fluoroalkylfluorophosphate Anions. Journal of Physical Chemistry B, 2010, 114, 3592-3600.	1.2	146
98	Liquid–liquid miscibility and volumetric properties of aqueous solutions of ionic liquids as a function of temperature. Journal of Chemical Thermodynamics, 2009, 41, 1206-1214.	1.0	63
99	On the Role of the Dipole and Quadrupole Moments of Aromatic Compounds in the Solvation by Ionic Liquids. Journal of Physical Chemistry B, 2009, 113, 9894-9900.	1.2	86
100	Phase Equilibria in Ionic Liquidâ°'Aromatic Compound Mixtures, Including Benzene Fluorination Effects. Journal of Physical Chemistry B, 2009, 113, 7631-7636.	1.2	33
101	Diffusion Coefficients of 1-Alkyl-3-methylimidazolium Ionic Liquids in Water, Methanol, and Acetonitrile at Infinite Dilution. Journal of Chemical & Engineering Data, 2009, 54, 2389-2394.	1.0	48
102	Thermodynamics and Micro Heterogeneity of Ionic Liquids. Topics in Current Chemistry, 2009, 290, 161-183.	4.0	53
103	1-Alkyl-3-methylimidazolium alkanesulfonate ionic liquids, [CnH2n+1mim][CkH2k+1SO3]: synthesis and physicochemical properties. Physical Chemistry Chemical Physics, 2009, 11, 8939.	1.3	70
104	Interaction between the π-System of Toluene and the Imidazolium Ring of Ionic Liquids: A Combined NMR and Molecular Simulation Study. Journal of Physical Chemistry B, 2009, 113, 170-177.	1.2	97
105	Atmosphere/water partition of halocyclohexanes from vapour pressure and solubility data. Atmospheric Environment, 2008, 42, 4724-4734.	1.9	21
106	Prediction of Ionic Liquid Properties. II. Volumetric Properties as a Function of Temperature and Pressure. Journal of Chemical & Engineering Data, 2008, 53, 2133-2143.	1.0	139
107	Prediction of Ionic Liquid Properties. I. Volumetric Properties as a Function of Temperature at 0.1 MPa. Journal of Chemical & Engineering Data, 2008, 53, 716-726.	1.0	233
108	Thermophysical properties, low pressure solubilities and thermodynamics of solvation of carbon dioxide and hydrogen in two ionic liquids based on the alkylsulfate anion. Green Chemistry, 2008, 10, 944.	4.6	61

#	Article	IF	CITATIONS
109	Interactions of Fluorinated Gases with Ionic Liquids: Solubility of CF ₄ , C ₂ F ₆ , and C ₃ F ₈ in Trihexyltetradecylphosphonium Bis(trifluoromethylsulfonyl)amide. Journal of Physical Chemistry B, 2008, 112, 12394-12400.	1.2	47
110	Solvation of Halogens in Fluorous Phases. Experimental and Simulation Data for F2, Cl2, and Br2 in Several Fluorinated Liquids. Journal of Physical Chemistry B, 2008, 112, 6653-6664.	1.2	13
111	Molecular Solutes in Ionic Liquids: A Structural Perspective. Accounts of Chemical Research, 2007, 40, 1087-1096.	7.6	450
112	Low-Pressure Solubility and Thermodynamics of Solvation of Carbon Dioxide, Ethane, and Hydrogen in 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide between Temperatures of 283 K and 343 K. Journal of Chemical & Engineering Data, 2007, 52, 472-475.	1.0	122
113	Influence of the Cation on the Solubility of CO2 and H2 in Ionic Liquids Based on the Bis(trifluoromethylsulfonyl)imide Anion. Journal of Solution Chemistry, 2007, 36, 967-979.	0.6	185
114	Effect of bromine substitution on the solubility of gases in hydrocarbons and fluorocarbons. Fluid Phase Equilibria, 2007, 251, 128-136.	1.4	7
115	Solubility of carbon dioxide and ethane in three ionic liquids based on the bis{(trifluoromethyl)sulfonyl}imide anion. Fluid Phase Equilibria, 2007, 257, 27-34.	1.4	74
116	Low pressure solubility and thermodynamics of solvation of oxygen, carbon dioxide, and carbon monoxide in fluorinated liquids. Journal of Chemical Thermodynamics, 2007, 39, 847-854.	1.0	27
117	Nonpolar, Polar, and Associating Solutes in Ionic Liquids. Journal of Physical Chemistry B, 2006, 110, 16816-16818.	1.2	446
118	Effect of Acetonitrile on the Solubility of Carbon Dioxide in 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide. Industrial & Engineering Chemistry Research, 2006, 45, 8180-8188.	1.8	61
119	Vapour pressures, aqueous solubility, Henry's law constants and air/water partition coefficients of 1,8-dichlorooctane and 1,8-dibromooctane. Chemosphere, 2006, 64, 1829-1836.	4.2	28
120	Low-pressure solubilities and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate. Fluid Phase Equilibria, 2006, 240, 87-95.	1.4	276
121	Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283K and 343K and at pressures close to atmospheric. Journal of Chemical Thermodynamics, 2006, 38, 490-502.	1.0	382
122	A Molecular Dynamics Study of Glucose Solvation in the Ionic Liquid 1,3-Dimethylimidazolium Chloride. ChemPhysChem, 2006, 7, 2279-2281.	1.0	115
123	Gas–liquid interactions in solution. Pure and Applied Chemistry, 2005, 77, 653-665.	0.9	40
124	Interactions of Gases with Ionic Liquids: Experimental Approach. ACS Symposium Series, 2005, , 207-218.	0.5	4
125	Molecular Simulation Study of Interactions of Carbon Dioxide and Water with Ionic Liquids. ChemPhysChem, 2004, 5, 1049-1052.	1.0	92
126	Solubility of oxygen, carbon dioxide and water in semifluorinated alkanes and in perfluorooctylbromide by molecular simulation. Journal of Fluorine Chemistry, 2004, 125, 409-413.	0.9	31

#	Article	IF	CITATIONS
127	Solubility of dioxygen in seven fluorinated liquids. Journal of Fluorine Chemistry, 2004, 125, 1325-1329.	0.9	54
128	Aqueous solubility, Henry's law constants and air/water partition coefficients of n-octane and two halogenated octanes. Chemosphere, 2004, 57, 1543-1551.	4.2	25
129	Solubilities of Oxygen and Carbon Dioxide in Butyl Methyl Imidazolium Tetrafluoroborate as a Function of Temperature and at Pressures Close to Atmospheric Pressure. Journal of Chemical & Engineering Data, 2003, 48, 480-485.	1.0	183
130	Interactions of Carbon Dioxide with Liquid Fluorocarbons. Journal of Physical Chemistry B, 2003, 107, 14020-14024.	1.2	67
131	Solubility of oxygen in n-hexane and in n-perfluorohexane. Experimental determination and prediction by molecular simulation. Physical Chemistry Chemical Physics, 2003, 5, 543-549.	1.3	76
132	Solubility isotope effects in aqueous solutions of methane. Journal of Chemical Physics, 2002, 116, 10816-10824.	1.2	34
133	Predicting the solubility of xenon in n-hexane and n-perfluorohexane: a simulation and theoretical study. Molecular Physics, 2002, 100, 2547-2553.	0.8	40
134	Solubility of xenon in n-hexane between 257 and 333 K. Fluid Phase Equilibria, 2002, 193, 41-51.	1.4	17
135	Determination of Henry's law constants for aqueous solutions of tetradeuteriomethane between 285 and 325 K and calculation of the H/D isotope effect. Physical Chemistry Chemical Physics, 2001, 3, 1047-1052.	1.3	23
136	Perfluoroalkanes in Water:  Experimental Henry's Law Coefficients for Hexafluoroethane and Computer Simulations for Tetrafluoromethane and Hexafluoroethane. Journal of Physical Chemistry B, 2001, 105, 8403-8409.	1.2	31