
Jonathan A Epstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1742896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CAR T cells produced in vivo to treat cardiac injury. Science, 2022, 375, 91-96.	12.6	441
2	CAR-based therapies: opportunities for immuno-medicine beyond cancer. Nature Metabolism, 2022, 4, 163-169.	11.9	43
3	Uniting Disciplines to Develop Therapeutics: Targeted mRNA Lipid Nanoparticles Reprogram the Immune System <i>In Vivo</i> to Treat Heart Disease. DNA and Cell Biology, 2022, 41, 539-543.	1.9	2
4	β-Hydroxybutyrate suppresses colorectal cancer. Nature, 2022, 605, 160-165.	27.8	120
5	Assaying fibroblast activation protein (FAP) expression <i>in vivo</i> and <i>in vitro</i> for possible targeting with chimeric antigen receptor (CAR) T cells. FASEB Journal, 2022, 36, .	0.5	0
6	SARS-CoV-2 spike protein binding selectively accelerates substrate-specific catalytic activity of ACE2. Journal of Biochemistry, 2021, 170, 299-306.	1.7	13
7	Immune Cells and Immunotherapy for Cardiac Injury and Repair. Circulation Research, 2021, 128, 1766-1779.	4.5	93
8	The nuclear periphery is a scaffold for tissue-specific enhancers. Nucleic Acids Research, 2021, 49, 6181-6195.	14.5	28
9	Effect of Opt-In vs Opt-Out Framing on Enrollment in a COVID-19 Surveillance Testing Program. JAMA Network Open, 2021, 4, e2112434.	5.9	4
10	Global chromatin relabeling accompanies spatial inversion of chromatin in rod photoreceptors. Science Advances, 2021, 7, eabj3035.	10.3	16
11	What's Important: Reopening Lessons from the Big Leagues' Experiences with COVID-19. Journal of Bone and Joint Surgery - Series A, 2021, 103, 1-3.	3.0	2
12	Not all stress is bad for your heart. Science, 2021, 374, 264-265.	12.6	3
13	Landscape of Hopx expression in cells of the immune system. Heliyon, 2021, 7, e08311.	3.2	4
14	Histone methyltransferase activity programs nuclear peripheral genome positioning. Developmental Biology, 2020, 466, 90-98.	2.0	17
15	An Engineered Mouse to Identify Proliferating Cells and Their Derivatives. Frontiers in Cell and Developmental Biology, 2020, 8, 388.	3.7	2
16	Teasing the Immune System to Repair the Heart. New England Journal of Medicine, 2020, 382, 1660-1662.	27.0	7
17	CARTing Away Cardiac Fibrosis. JACC: CardioOncology, 2020, 2, 110-113.	4.0	1
18	Targeting cardiac fibrosis with engineered T cells. Nature, 2019, 573, 430-433.	27.8	404

#	Article	IF	CITATIONS
19	Lineage-specific reorganization of nuclear peripheral heterochromatin and H3K9me2 domains. Development (Cambridge), 2019, 146, .	2.5	18
20	A Common Embryonic Origin of Stem Cells Drives Developmental and Adult Neurogenesis. Cell, 2019, 177, 654-668.e15.	28.9	186
21	A Time to Press Reset and Regenerate Cardiac Stem Cell Biology. JAMA Cardiology, 2019, 4, 95.	6.1	37
22	Semaphorin 3E/PlexinD1 signaling is required for cardiac ventricular compaction. JCI Insight, 2019, 4, .	5.0	33
23	H3K9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. ELife, 2019, 8, .	6.0	81
24	Abstract 633: Semaphorin3e-Plexind1 Signaling is Required for Cardiac Ventricular Compaction. Circulation Research, 2019, 125, .	4.5	0
25	Competent for commitment: you've got to have heart!. Genes and Development, 2018, 32, 4-13.	5.9	10
26	Endocardial Hippo signaling regulates myocardial growth and cardiogenesis. Developmental Biology, 2018, 440, 22-30.	2.0	26
27	Beating the odds: programming proliferation in the mammalian heart. Genome Medicine, 2018, 10, 36.	8.2	2
28	Zinc transporter Slc39a8 is essential for cardiac ventricular compaction. Journal of Clinical Investigation, 2018, 128, 826-833.	8.2	39
29	CELL FATE DETERMINATION IN 3D: REGULATION OF GENE EXPRESSION VIA CHROMATIN INTERACTIONS WITH THE NUCLEAR MEMBRANE. Transactions of the American Clinical and Climatological Association, 2018, 129, 121-131.	0.5	0
30	Foxa2 identifies a cardiac progenitor population with ventricular differentiation potential. Nature Communications, 2017, 8, 14428.	12.8	68
31	Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction. Cell, 2017, 171, 573-587.e14.	28.9	162
32	A radial axis defined by Semaphorin to Neuropilin signaling controls pancreatic islet morphogenesis. Development (Cambridge), 2017, 144, 3744-3754.	2.5	29
33	Chromatin and Transcriptional Analysis of Mesoderm Progenitor Cells Identifies HOPX as a Regulator of Primitive Hematopoiesis. Cell Reports, 2017, 20, 1597-1608.	6.4	50
34	Intestinal Enteroendocrine Lineage Cells Possess Homeostatic and Injury-Inducible Stem Cell Activity. Cell Stem Cell, 2017, 21, 78-90.e6.	11.1	280
35	Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. Journal of Clinical Investigation, 2017, 127, 899-911.	8.2	126
36	Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types. Cell, 2016, 166, 451-467.	28.9	367

#	Article	IF	CITATIONS
37	Coronary vasculature patterning requires a novel endothelial ErbB2 holoreceptor. Nature Communications, 2016, 7, 12038.	12.8	32
38	Hippo Signaling Mediators Yap and Taz Are Required in the Epicardium for Coronary Vasculature Development. Cell Reports, 2016, 15, 1384-1393.	6.4	109
39	Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain. ELife, 2016, 5, .	6.0	29
40	Combinatorial Identification of Broad Association Regions with ChIP-seq Data. , 2016, , .		0
41	Loss of neurofibromin Ras-GAP activity enhances the formation of cardiac blood islands in murine embryos. ELife, 2015, 4, e07780.	6.0	15
42	Strategic Transformation of Population Studies: Recommendations of the Working Group on Epidemiology and Population Sciences From the National Heart, Lung, and Blood Advisory Council and Board of External Experts. American Journal of Epidemiology, 2015, 181, 363-368.	3.4	36
43	De novo mutations in PLXND1 and REV3L cause Möbius syndrome. Nature Communications, 2015, 6, 7199.	12.8	76
44	Roger et al. Respond to "Future of Population Studies". American Journal of Epidemiology, 2015, 181, 372-373.	3.4	3
45	Semaphorin Signaling in Cardiovascular Development. Cell Metabolism, 2015, 21, 163-173.	16.2	90
46	Circadian control of bile acid synthesis by a KLF15-Fgf15 axis. Nature Communications, 2015, 6, 7231.	12.8	68
47	The Genetic Landscape of Hematopoietic Stem Cell Frequency in Mice. Stem Cell Reports, 2015, 5, 125-138.	4.8	21
48	Peripherally Induced Tolerance Depends on Peripheral Regulatory T Cells That Require Hopx To Inhibit Intrinsic IL-2 Expression. Journal of Immunology, 2015, 195, 1489-1497.	0.8	38
49	Integration of Bmp and Wnt signaling by Hopx specifies commitment of cardiomyoblasts. Science, 2015, 348, aaa6071.	12.6	132
50	Plexin D1 determines body fat distribution by regulating the type V collagen microenvironment in visceral adipose tissue. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4363-4368.	7.1	61
51	Plasticity of Hopx+ type I alveolar cells to regenerate type II cells in the lung. Nature Communications, 2015, 6, 6727.	12.8	254
52	Hopx distinguishes hippocampal from lateral ventricle neural stem cells. Stem Cell Research, 2015, 15, 522-529.	0.7	41
53	Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest. Development (Cambridge), 2015, 142, 2962-71.	2.5	79
54	A multidisciplinary approach in neurofibromatosis 1–Authors' reply. Lancet Neurology, The, 2015, 14, 30-31.	10.2	1

#	Article	IF	CITATIONS
55	Semaphorin 3d and Semaphorin 3e Direct Endothelial Motility through Distinct Molecular Signaling Pathways. Journal of Biological Chemistry, 2014, 289, 17971-17979.	3.4	58
56	Genetic dissection of plexin signaling in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2194-2199.	7.1	61
57	Pax3 and Hippo Signaling Coordinate Melanocyte Gene Expression in Neural Crest. Cell Reports, 2014, 9, 1885-1895.	6.4	49
58	Single-Cell Analysis of Proxy Reporter Allele-Marked Epithelial Cells Establishes Intestinal Stem Cell Hierarchy. Stem Cell Reports, 2014, 3, 876-891.	4.8	93
59	Modulation of cAMP and Ras Signaling Pathways Improves Distinct Behavioral Deficits in a Zebrafish Model of Neurofibromatosis Type 1. Cell Reports, 2014, 8, 1265-1270.	6.4	59
60	The Notch1 transcriptional activation domain is required for development and reveals a novel role for Notch1 signaling in fetal hematopoietic stem cells. Genes and Development, 2014, 28, 576-593.	5.9	49
61	β-catenin regulates Pax3 and Cdx2 for caudal neural tube closure and elongation. Development (Cambridge), 2014, 141, 148-157.	2.5	72
62	The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development (Cambridge), 2014, 141, 4500-4512.	2.5	173
63	Repair and Regeneration of the Respiratory System: Complexity, Plasticity, and Mechanisms of Lung Stem Cell Function. Cell Stem Cell, 2014, 15, 123-138.	11.1	748
64	Inhibition of TGFβ Signaling Increases Direct Conversion of Fibroblasts to Induced Cardiomyocytes. PLoS ONE, 2014, 9, e89678.	2.5	159
65	Induced regeneration—the progress and promise of direct reprogramming for heart repair. Nature Medicine, 2013, 19, 829-836.	30.7	84
66	Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success. Journal of Molecular and Cellular Cardiology, 2013, 60, 97-106.	1.9	220
67	Semaphorin 3d signaling defects are associated with anomalous pulmonary venous connections. Nature Medicine, 2013, 19, 760-765.	30.7	67
68	Murine craniofacial development requires Hdac3-mediated repression of Msx gene expression. Developmental Biology, 2013, 377, 333-344.	2.0	36
69	Molecular Determinants of Lung Development. Annals of the American Thoracic Society, 2013, 10, S12-S16.	3.2	73
70	An Epigenetic Roadmap for Cardiomyocyte Differentiation. Circulation Research, 2013, 112, 881-883.	4.5	4
71	<i>Hopx</i> expression defines a subset of multipotent hair follicle stem cells and a progenitor population primed to give rise to K6+ niche cells. Development (Cambridge), 2013, 140, 1655-1664.	2.5	65
72	Plxnd1 Expression in Thymocytes Regulates Their Intrathymic Migration While That in Thymic Endothelium Impacts Medullary Topology. Frontiers in Immunology, 2013, 4, 392.	4.8	14

#	Article	IF	CITATIONS
73	Resolution of defective dorsal aortae patterning in Sema3Eâ€deficient mice occurs via angiogenic remodeling. Developmental Dynamics, 2013, 242, 580-590.	1.8	27
74	Lgr5 Identifies Progenitor Cells Capable of Taste Bud Regeneration after Injury. PLoS ONE, 2013, 8, e66314.	2.5	61
75	Epicardial Lineages and Cardiac Repair. Journal of Developmental Biology, 2013, 1, 141-158.	1.7	6
76	New approaches under development: cardiovascular embryology applied to heart disease. Journal of Clinical Investigation, 2013, 123, 71-74.	8.2	10
77	Notch Activation of Jagged1 Contributes to the Assembly of the Arterial Wall. Circulation, 2012, 125, 314-323.	1.6	144
78	Epicardium-Derived Cardiac Mesenchymal Stem Cells: Expanding the Outer Limit of Heart Repair. Circulation Research, 2012, 110, 904-906.	4.5	25
79	Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development. DMM Disease Models and Mechanisms, 2012, 5, 881-94.	2.4	72
80	Trichostatin A Abrogates Airway Constriction, but Not Inflammation, in Murine and Human Asthma Models. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 132-138.	2.9	71
81	Myocardial Notch Signaling Reprograms Cardiomyocytes to a Conduction-Like Phenotype. Circulation, 2012, 126, 1058-1066.	1.6	84
82	Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood, 2012, 120, 2340-2348.	1.4	196
83	Distinct Compartments of the Proepicardial Organ Give Rise to Coronary Vascular Endothelial Cells. Developmental Cell, 2012, 22, 639-650.	7.0	304
84	Coordinating Tissue Interactions: Notch Signaling in Cardiac Development and Disease. Developmental Cell, 2012, 22, 244-254.	7.0	229
85	<i>Islet1</i> Derivatives in the Heart Are of Both Neural Crest and Second Heart Field Origin. Circulation Research, 2012, 110, 922-926.	4.5	118
86	Zebrafish Model for NF1. , 2012, , 535-547.		1
87	Semaphorin-PlexinD1 Signaling Limits Angiogenic Potential via the VEGF Decoy Receptor sFlt1. Developmental Cell, 2011, 21, 301-314.	7.0	145
88	Homeodomain Only Protein X is down-regulated in human heart failure. Journal of Molecular and Cellular Cardiology, 2011, 50, 1056-1058.	1.9	21
89	Highly Efficient miRNA-Mediated Reprogramming of Mouse and Human Somatic Cells to Pluripotency. Cell Stem Cell, 2011, 8, 376-388.	11.1	1,121
90	Histone Deacetylase 3 Regulates Smooth Muscle Differentiation in Neural Crest Cells and Development of the Cardiac Outflow Tract. Circulation Research, 2011, 109, 1240-1249.	4.5	55

#	Article	IF	CITATIONS
91	MicroRNA-processing Enzyme Dicer Is Required in Epicardium for Coronary Vasculature Development. Journal of Biological Chemistry, 2011, 286, 41036-41045.	3.4	42
92	Interconversion Between Intestinal Stem Cell Populations in Distinct Niches. Science, 2011, 334, 1420-1424.	12.6	638
93	Kicking the Epicardium Up a Notch. Circulation Research, 2011, 108, 6-8.	4.5	6
94	Diet-induced Lethality Due to Deletion of the Hdac3 Gene in Heart and Skeletal Muscle. Journal of Biological Chemistry, 2011, 286, 33301-33309.	3.4	83
95	Micro-Managing Myocyte Mitosis. Circulation Research, 2011, 109, 611-613.	4.5	4
96	Cardiac neural crest orchestrates remodeling and functional maturation of mouse semilunar valves. Journal of Clinical Investigation, 2011, 121, 422-430.	8.2	142
97	Notch signaling regulates murine atrioventricular conduction and the formation of accessory pathways. Journal of Clinical Investigation, 2011, 121, 525-533.	8.2	84
98	Molecular mechanisms of neural crestâ€related congenital heart disease. FASEB Journal, 2011, 25, 302.4.	0.5	0
99	Neural crest and cardiac development. FASEB Journal, 2011, 25, 176.4.	0.5	0
100	Tissue–Tissue Interactions During Morphogenesis of the Outflow Tract. Pediatric Cardiology, 2010, 31, 408-413.	1.3	22
101	Persistence of effector memory Th1 cells is regulated by <i>Hopx</i> . European Journal of Immunology, 2010, 40, 2993-3006.	2.9	70
102	Notch and cardiac outflow tract development. Annals of the New York Academy of Sciences, 2010, 1188, 184-190.	3.8	48
103	Ash2l interacts with Tbx1 and is required during early embryogenesis. Experimental Biology and Medicine, 2010, 235, 569-576.	2.4	89
104	Foxp1/2/4-NuRD Interactions Regulate Gene Expression and Epithelial Injury Response in the Lung via Regulation of Interleukin-6. Journal of Biological Chemistry, 2010, 285, 13304-13313.	3.4	57
105	Rapid 3D Phenotyping of Cardiovascular Development in Mouse Embryos by Micro-CT With Iodine Staining. Circulation: Cardiovascular Imaging, 2010, 3, 314-322.	2.6	233
106	Oligodendrocyte progenitor cell numbers and migration are regulated by the zebrafish orthologs of the NF1 tumor suppressor gene. Human Molecular Genetics, 2010, 19, 4643-4653.	2.9	42
107	Gata4 and Gata5 Cooperatively Regulate Cardiac Myocyte Proliferation in Mice. Journal of Biological Chemistry, 2010, 285, 1765-1772.	3.4	82
108	Cardiac Development and Implications for Heart Disease. New England Journal of Medicine, 2010, 363, 1638-1647.	27.0	105

#	Article	IF	CITATIONS
109	Hopx and Hdac2 Interact to Modulate Gata4 Acetylation and Embryonic Cardiac Myocyte Proliferation. Developmental Cell, 2010, 19, 450-459.	7.0	125
110	Distinct enhancers at the Pax3 locus can function redundantly to regulate neural tube and neural crest expressions. Developmental Biology, 2010, 339, 519-527.	2.0	50
111	Melanocyteâ€like cells in the heart and pulmonary veins contribute to atrial arrhythmia triggers. FASEB Journal, 2010, 24, 180.4.	0.5	0
112	Biomarker system for studying muscle, stem cells, and cancer <i>in vivo</i> . FASEB Journal, 2009, 23, 2681-2690.	0.5	125
113	Cardiac and vascular functions of the zebrafish orthologues of the type I neurofibromatosis gene <i>NFI</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22305-22310.	7.1	28
114	Cardiomyocyte Renewal. New England Journal of Medicine, 2009, 361, 86-88.	27.0	67
115	Inpp5f Is a Polyphosphoinositide Phosphatase That Regulates Cardiac Hypertrophic Responsiveness. Circulation Research, 2009, 105, 1240-1247.	4.5	59
116	Cardiomyocyte-Specific Loss of Neurofibromin Promotes Cardiac Hypertrophy and Dysfunction. Circulation Research, 2009, 105, 304-311.	4.5	41
117	Tie2Cre-mediated inactivation of plexinD1 results in congenital heart, vascular and skeletal defects. Developmental Biology, 2009, 325, 82-93.	2.0	92
118	Increased thymus- and decreased parathyroid-fated organ domains in Splotch mutant embryos. Developmental Biology, 2009, 327, 216-227.	2.0	43
119	Menin expression modulates mesenchymal cell commitment to the myogenic and osteogenic lineages. Developmental Biology, 2009, 332, 116-130.	2.0	35
120	Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. Journal of Clinical Investigation, 2009, 119, 1986-96.	8.2	155
121	Melanocyte-like cells in the heart and pulmonary veins contribute to atrial arrhythmia triggers. Journal of Clinical Investigation, 2009, 119, 3420-36.	8.2	76
122	Regulation of survival in adult hippocampal and glioblastoma stem cell lineages by the homeodomain-only protein HOP. Neural Development, 2008, 3, 13.	2.4	27
123	Cre reporter mouse expressing a nuclear localized fusion of GFP and βâ€galactosidase reveals new derivatives of Pax3â€expressing precursors. Genesis, 2008, 46, 200-204.	1.6	41
124	PlexinD1 Glycoprotein Controls Migration of Positively Selected Thymocytes into the Medulla. Immunity, 2008, 29, 888-898.	14.3	117
125	Transgenic Overexpression of Hdac3 in the Heart Produces Increased Postnatal Cardiac Myocyte Proliferation but Does Not Induce Hypertrophy. Journal of Biological Chemistry, 2008, 283, 26484-26489.	3.4	100
126	The multifaceted role of Notch in cardiac development and disease. Nature Reviews Genetics, 2008, 9, 49-61.	16.3	259

#	Article	IF	CITATIONS
127	Histone deacetylase inhibition reduces myocardial ischemiaâ€reperfusion injury in mice. FASEB Journal, 2008, 22, 3549-3560.	0.5	248
128	A nonclassical bHLH–Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling. Genes and Development, 2008, 22, 166-178.	5.9	116
129	Endothelial expression of the Notch ligand Jagged1 is required for vascular smooth muscle development. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1955-1959.	7.1	288
130	Pax3 regulation of FGF signaling affects the progression of embryonic progenitor cells into the myogenic program. Genes and Development, 2008, 22, 1828-1837.	5.9	124
131	Persistent expression of Pax3 in the neural crest causes cleft palate and defective osteogenesis in mice. Journal of Clinical Investigation, 2008, 118, 2076-87.	8.2	60
132	Currying favor for the heart. Journal of Clinical Investigation, 2008, 118, 850-2.	8.2	14
133	Atlantic City is passé — l'm betting on Chicago. Journal of Clinical Investigation, 2008, 118, 1235-1236.	8.2	1
134	RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4443-4448.	7.1	202
135	<i>NF1</i> Regulates a Ras-Dependent Vascular Smooth Muscle Proliferative Injury Response. Circulation, 2007, 116, 2148-2156.	1.6	69
136	Menin is required in cranial neural crest for palatogenesis and perinatal viability. Developmental Biology, 2007, 311, 524-537.	2.0	30
137	Signalling Pathways Regulating Cardiac Neural Crest Migration and Differentiation. Novartis Foundation Symposium, 2007, 283, 152-164.	1.1	15
138	Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity. Nature Medicine, 2007, 13, 324-331.	30.7	433
139	An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation. Journal of Clinical Investigation, 2007, 117, 353-363.	8.2	234
140	Analysis of the Structure and Function of the Transcriptional Coregulator HOP,. Biochemistry, 2006, 45, 10584-10590.	2.5	30
141	Distinct roles of HF-1b/Sp4 in ventricular and neural crest cells lineages affect cardiac conduction system development. Developmental Biology, 2006, 291, 208-217.	2.0	28
142	Hop functions downstream of Nkx2.1 and GATA6 to mediate HDAC-dependent negative regulation of pulmonary gene expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L191-L199.	2.9	74
143	Tbx1 affects asymmetric cardiac morphogenesis by regulating <i>Pitx2</i> in the secondary heart field. Development (Cambridge), 2006, 133, 1565-1573.	2.5	132
144	Transcriptional Genomics Associates FOX Transcription Factors With Human Heart Failure. Circulation, 2006, 114, 1269-1276.	1.6	210

#	Article	IF	CITATIONS
145	Inhibition of Histone Deacetylation Blocks Cardiac Hypertrophy Induced by Angiotensin II Infusion and Aortic Banding. Circulation, 2006, 113, 51-59.	1.6	326
146	Somitic origin of limb muscle satellite and side population cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 945-950.	7.1	186
147	The neurofibromin GAP-related domain rescues endothelial but not neural crest development in Nf1-/- mice. Journal of Clinical Investigation, 2006, 116, 2378-84.	8.2	45
148	Notch Signaling Regulates Hematopoietic Stem Cell Homeostasis in the Fetal Liver through a Non-Cell-Autonomous Mechanism Blood, 2006, 108, 440-440.	1.4	0
149	A Perspective on the Value of Aquatic Models in Biomedical Research. Experimental Biology and Medicine, 2005, 230, 1-7.	2.4	21
150	Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature, 2005, 433, 884-887.	27.8	350
151	MRL mice fail to heal the heart in response to ischemia-reperfusion injury. Wound Repair and Regeneration, 2005, 13, 205-208.	3.0	43
152	Identification of a hypaxial somite enhancer element regulatingPax3 expression in migrating myoblasts and characterization of hypaxial muscle Cre transgenic mice. Genesis, 2005, 41, 202-209.	1.6	57
153	Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and cardiovascular development. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8916-8921.	7.1	134
154	Identification of a novel nuclear localization signal in Tbx1 that is deleted in DiGeorge syndrome patients harboring the 1223delC mutation. Human Molecular Genetics, 2005, 14, 885-892.	2.9	68
155	Congenital heart disease reminiscent of partial trisomy 2p syndrome in mice transgenic for the transcription factor Lbh. Development (Cambridge), 2005, 132, 3305-3316.	2.5	48
156	Recent Advances in Cardiac Development With Therapeutic Implications for Adult Cardiovascular Disease. Circulation, 2005, 112, 592-597.	1.6	37
157	Pursuing Cardiac Progenitors: Regeneration Redux. Cell, 2005, 120, 295-298.	28.9	77
158	Insertion of Cre into the Pax3 locus creates a new allele of Splotch and identifies unexpected Pax3 derivatives. Developmental Biology, 2005, 280, 396-406.	2.0	216
159	Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart. Developmental Biology, 2005, 286, 299-310.	2.0	146
160	Cardiac neural crest. Seminars in Cell and Developmental Biology, 2005, 16, 704-715.	5.0	174
161	Tie2-Cre–Induced Inactivation of a Conditional Mutant Nf1 Allele in Mouse Results in a Myeloproliferative Disorder that Models Juvenile Myelomonocytic Leukemia. Pediatric Research, 2004, 55, 581-584.	2.3	40
162	Full spectrum of malformations in velo-cardio-facial syndrome/DiGeorge syndrome mouse models by altering Tbx1 dosage. Human Molecular Genetics, 2004, 13, 1577-1585.	2.9	214

#	Article	IF	CITATIONS
163	Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6502-6507.	7.1	237
164	Development Gone Awry. Circulation Research, 2004, 94, 273-283.	4.5	129
165	Identification of minimal enhancer elements sufficient for Pax3 expression in neural crest and implication of Tead2 as a regulator of Pax3. Development (Cambridge), 2004, 131, 829-837.	2.5	95
166	Cardiac outflow tract defects in mice lacking ALK2 in neural crest cells. Development (Cambridge), 2004, 131, 3481-3490.	2.5	171
167	Detection of Cardiac Allograft Rejection and Response to Immunosuppressive Therapy With Peripheral Blood Gene Expression. Circulation, 2004, 110, 3815-3821.	1.6	148
168	Mouse model of Noonan syndrome reveals cell type– and gene dosage–dependent effects of Ptpn11 mutation. Nature Medicine, 2004, 10, 849-857.	30.7	384
169	PlexinD1 and Semaphorin Signaling Are Required in Endothelial Cells for Cardiovascular Development. Developmental Cell, 2004, 7, 107-116.	7.0	338
170	Semaphorin-Plexin Signaling Guides Patterning of the Developing Vasculature. Developmental Cell, 2004, 7, 117-123.	7.0	350
171	Cre-mediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse. Developmental Biology, 2004, 267, 190-202.	2.0	129
172	Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery. Journal of Clinical Investigation, 2004, 113, 1051-1058.	8.2	127
173	Hopping to the BeatHop Regulation of Cardiac Gene Expression. Trends in Cardiovascular Medicine, 2003, 13, 261-264.	4.9	21
174	Molecular markers of cardiac endocardial cushion development. Developmental Dynamics, 2003, 228, 643-650.	1.8	97
175	An eye on organ development. Nature, 2003, 426, 238-239.	27.8	18
176	Nf1 has an essential role in endothelial cells. Nature Genetics, 2003, 33, 75-79.	21.4	153
177	Endothelial lineage-mediated loss of the GATA cofactor Friend of GATA 1 impairs cardiac development. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14030-14035.	7.1	39
178	Regulating Heart Development: The Role ofNf1. Cell Cycle, 2003, 2, 95-97.	2.6	8
179	Cardiac hypertrophy and histone deacetylase–dependent transcriptional repression mediated by the atypical homeodomain protein Hop. Journal of Clinical Investigation, 2003, 112, 863-871.	8.2	289

180 Regulating heart development: the role of Nf1. Cell Cycle, 2003, 2, 96-8.

2.6 4

#	Article	IF	CITATIONS
181	Perspective: Cardiovascular Disease in the Postgenomic Era—Lessons Learned and Challenges Ahead. Endocrinology, 2002, 143, 2045-2050.	2.8	16
182	Smooth Muscle Cells, But Not Myocytes, of Host Origin in Transplanted Human Hearts. Circulation, 2002, 106, 17-19.	1.6	192
183	Cardiovascular disease in neurofibromatosis 1: Report of the NF1 Cardiovascular Task Force. Genetics in Medicine, 2002, 4, 105-111.	2.4	330
184	The Role of Neural Crest during Cardiac Development in a Mouse Model of DiGeorge Syndrome. Developmental Biology, 2002, 251, 157-166.	2.0	85
185	Hop Is an Unusual Homeobox Gene that Modulates Cardiac Development. Cell, 2002, 110, 713-723.	28.9	256
186	Getting your Pax straight: Pax proteins in development and disease. Trends in Genetics, 2002, 18, 41-47.	6.7	410
187	Characterization of the Murine Lbx2 Promoter, Identification of the Human Homologue, and Evaluation as a Candidate for Alström Syndrome. Genomics, 2001, 74, 219-227.	2.9	6
188	TBX1 Is Responsible for Cardiovascular Defects in Velo-Cardio-Facial/DiGeorge Syndrome. Cell, 2001, 104, 619-629.	28.9	884
189	Developing models of DiGeorge syndrome. Trends in Genetics, 2001, 17, S13-S17.	6.7	61
190	A Gene Expression Screen in Zebrafish Embryogenesis. Genome Research, 2001, 11, 1979-1987.	5.5	202
191	The LN54 Radiation Hybrid Map of Zebrafish Expressed Sequences. Genome Research, 2001, 11, 2127-2132.	5.5	65
192	Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development (Cambridge), 2001, 128, 3061-3070.	2.5	282
193	PlexinA2 and semaphorin signaling during cardiac neural crest development. Development (Cambridge), 2001, 128, 3071-3080.	2.5	183
194	Rnf4, a RING protein expressed in the developing nervous and reproductive systems, interacts withGscl, a gene within the DiGeorge critical region. Developmental Dynamics, 2000, 218, 102-111.	1.8	30
195	Neural crest expression of Cre recombinase directed by the proximal Pax3 promoter in transgenic mice. Genesis, 2000, 26, 162-164.	1.6	149
196	Transcriptional Regulation of Cardiac Development: Implications for Congenital Heart Disease and DiGeorge Syndrome. Pediatric Research, 2000, 48, 717-724.	2.3	50
197	Pax3 and Vertebrate Development. , 2000, 137, 459-470.		23
198	Gene Expression Analysis by In Situ Hybridization: Radioactive Probes. , 2000, 137, 87-96.		23

12

#	Article	IF	CITATIONS
199	Developmental Cardiology Comes of Age. Circulation Research, 2000, 87, 833-834.	4.5	6
200	Pax3 is required for enteric ganglia formation and functions with Sox10 to modulate expression of c-ret. Journal of Clinical Investigation, 2000, 106, 963-971.	8.2	185
201	Lbx2, a novel murine homeobox gene related to the Drosophila ladybird genes is expressed in the developing urogenital system, eye and brain. Mechanisms of Development, 1999, 84, 181-184.	1.7	26
202	Novel Human and Mouse Homologs of Saccharomyces cerevisiae DNA Polymerase Ε. Genomics, 1999, 60, 20-30.	2.9	183
203	Neurofibromin Deficiency in Mice Causes Exencephaly and Is a Modifier for Splotch Neural Tube Defects. Developmental Biology, 1999, 212, 80-92.	2.0	48
204	p57Kip2 Expression Is Enhanced During Mid-Cardiac Murine Development and Is Restricted to Trabecular Myocardium. Pediatric Research, 1999, 45, 635-642.	2.3	51
205	Gscl, a gene within the minimal DiGeorge critical region, is expressed in primordial germ cells and the developing pons. Developmental Dynamics, 1998, 212, 86-93.	1.8	9
206	Tumor-Specific PAX3-FKHR Transcription Factor, but Not PAX3, Activates the Platelet-Derived Growth Factor Alpha Receptor. Molecular and Cellular Biology, 1998, 18, 4118-4130.	2.3	71
207	Pax3, Neural Crest and Cardiovascular Development. Trends in Cardiovascular Medicine, 1996, 6, 255-260.	4.9	45
208	Pax3 Inhibits Myogenic Differentiation of Cultured Myoblast Cells. Journal of Biological Chemistry, 1995, 270, 11719-11722.	3.4	180