Jonathan A Epstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1742896/publications.pdf

Version: 2024-02-01

208 papers

23,048 citations

80 h-index 9103

222 all docs 222 docs citations

times ranked

222

26311 citing authors

g-index

#	Article	IF	CITATIONS
1	Highly Efficient miRNA-Mediated Reprogramming of Mouse and Human Somatic Cells to Pluripotency. Cell Stem Cell, 2011, 8, 376-388.	11.1	1,121
2	TBX1 Is Responsible for Cardiovascular Defects in Velo-Cardio-Facial/DiGeorge Syndrome. Cell, 2001, 104, 619-629.	28.9	884
3	Repair and Regeneration of the Respiratory System: Complexity, Plasticity, and Mechanisms of Lung Stem Cell Function. Cell Stem Cell, 2014, 15, 123-138.	11.1	748
4	Interconversion Between Intestinal Stem Cell Populations in Distinct Niches. Science, 2011, 334, 1420-1424.	12.6	638
5	CAR T cells produced in vivo to treat cardiac injury. Science, 2022, 375, 91-96.	12.6	441
6	Hdac2 regulates the cardiac hypertrophic response by modulating $Gsk3\hat{l}^2$ activity. Nature Medicine, 2007, 13, 324-331.	30.7	433
7	Getting your Pax straight: Pax proteins in development and disease. Trends in Genetics, 2002, 18, 41-47.	6.7	410
8	Targeting cardiac fibrosis with engineered T cells. Nature, 2019, 573, 430-433.	27.8	404
9	Mouse model of Noonan syndrome reveals cell type– and gene dosage–dependent effects of Ptpn11 mutation. Nature Medicine, 2004, 10, 849-857.	30.7	384
10	Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types. Cell, 2016, 166, 451-467.	28.9	367
11	Semaphorin-Plexin Signaling Guides Patterning of the Developing Vasculature. Developmental Cell, 2004, 7, 117-123.	7.0	350
12	Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature, 2005, 433, 884-887.	27.8	350
13	PlexinD1 and Semaphorin Signaling Are Required in Endothelial Cells for Cardiovascular Development. Developmental Cell, 2004, 7, 107-116.	7.0	338
14	Cardiovascular disease in neurofibromatosis 1: Report of the NF1 Cardiovascular Task Force. Genetics in Medicine, 2002, 4, 105-111.	2.4	330
15	Inhibition of Histone Deacetylation Blocks Cardiac Hypertrophy Induced by Angiotensin II Infusion and Aortic Banding. Circulation, 2006, 113, 51-59.	1.6	326
16	Distinct Compartments of the Proepicardial Organ Give Rise to Coronary Vascular Endothelial Cells. Developmental Cell, 2012, 22, 639-650.	7.0	304
17	Cardiac hypertrophy and histone deacetylase–dependent transcriptional repression mediated by the atypical homeodomain protein Hop. Journal of Clinical Investigation, 2003, 112, 863-871.	8.2	289
18	Endothelial expression of the Notch ligand Jagged1 is required for vascular smooth muscle development. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1955-1959.	7.1	288

#	Article	IF	CITATIONS
19	Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development (Cambridge), 2001, 128, 3061-3070.	2.5	282
20	Intestinal Enteroendocrine Lineage Cells Possess Homeostatic and Injury-Inducible Stem Cell Activity. Cell Stem Cell, 2017, 21, 78-90.e6.	11.1	280
21	The multifaceted role of Notch in cardiac development and disease. Nature Reviews Genetics, 2008, 9, 49-61.	16.3	259
22	Hop Is an Unusual Homeobox Gene that Modulates Cardiac Development. Cell, 2002, 110, 713-723.	28.9	256
23	Plasticity of Hopx+ type I alveolar cells to regenerate type II cells in the lung. Nature Communications, 2015, 6, 6727.	12.8	254
24	Histone deacetylase inhibition reduces myocardial ischemiaâ€reperfusion injury in mice. FASEB Journal, 2008, 22, 3549-3560.	0.5	248
25	Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6502-6507.	7.1	237
26	An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation. Journal of Clinical Investigation, 2007, 117 , $353-363$.	8.2	234
27	Rapid 3D Phenotyping of Cardiovascular Development in Mouse Embryos by Micro-CT With Iodine Staining. Circulation: Cardiovascular Imaging, 2010, 3, 314-322.	2.6	233
28	Coordinating Tissue Interactions: Notch Signaling in Cardiac Development and Disease. Developmental Cell, 2012, 22, 244-254.	7.0	229
29	Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success. Journal of Molecular and Cellular Cardiology, 2013, 60, 97-106.	1.9	220
30	Insertion of Cre into the Pax3 locus creates a new allele of Splotch and identifies unexpected Pax3 derivatives. Developmental Biology, 2005, 280, 396-406.	2.0	216
31	Full spectrum of malformations in velo-cardio-facial syndrome/DiGeorge syndrome mouse models by altering Tbx1 dosage. Human Molecular Genetics, 2004, 13, 1577-1585.	2.9	214
32	Transcriptional Genomics Associates FOX Transcription Factors With Human Heart Failure. Circulation, 2006, 114, 1269-1276.	1.6	210
33	A Gene Expression Screen in Zebrafish Embryogenesis. Genome Research, 2001, 11, 1979-1987.	5.5	202
34	RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4443-4448.	7.1	202
35	Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood, 2012, 120, 2340-2348.	1.4	196
36	Smooth Muscle Cells, But Not Myocytes, of Host Origin in Transplanted Human Hearts. Circulation, 2002, 106, 17-19.	1.6	192

#	Article	IF	CITATIONS
37	Somitic origin of limb muscle satellite and side population cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 945-950.	7.1	186
38	A Common Embryonic Origin of Stem Cells Drives Developmental and Adult Neurogenesis. Cell, 2019, 177, 654-668.e15.	28.9	186
39	Pax3 is required for enteric ganglia formation and functions with Sox10 to modulate expression of c-ret. Journal of Clinical Investigation, 2000, 106, 963-971.	8.2	185
40	Novel Human and Mouse Homologs of Saccharomyces cerevisiae DNA Polymerase $\hat{\iota}$. Genomics, 1999, 60, 20-30.	2.9	183
41	PlexinA2 and semaphorin signaling during cardiac neural crest development. Development (Cambridge), 2001, 128, 3071-3080.	2.5	183
42	Pax3 Inhibits Myogenic Differentiation of Cultured Myoblast Cells. Journal of Biological Chemistry, 1995, 270, 11719-11722.	3.4	180
43	Cardiac neural crest. Seminars in Cell and Developmental Biology, 2005, 16, 704-715.	5.0	174
44	The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development (Cambridge), 2014, 141, 4500-4512.	2.5	173
45	Cardiac outflow tract defects in mice lacking ALK2 in neural crest cells. Development (Cambridge), 2004, 131, 3481-3490.	2.5	171
46	Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction. Cell, 2017, 171, 573-587.e14.	28.9	162
47	Inhibition of $TGF\hat{l}^2$ Signaling Increases Direct Conversion of Fibroblasts to Induced Cardiomyocytes. PLoS ONE, 2014, 9, e89678.	2.5	159
48	Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. Journal of Clinical Investigation, 2009, 119, 1986-96.	8.2	155
49	Nf1 has an essential role in endothelial cells. Nature Genetics, 2003, 33, 75-79.	21.4	153
50	Neural crest expression of Cre recombinase directed by the proximal Pax3 promoter in transgenic mice. Genesis, 2000, 26, 162-164.	1.6	149
51	Detection of Cardiac Allograft Rejection and Response to Immunosuppressive Therapy With Peripheral Blood Gene Expression. Circulation, 2004, 110, 3815-3821.	1.6	148
52	Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart. Developmental Biology, 2005, 286, 299-310.	2.0	146
53	Semaphorin-PlexinD1 Signaling Limits Angiogenic Potential via the VEGF Decoy Receptor sFlt1. Developmental Cell, 2011, 21, 301-314.	7.0	145
54	Notch Activation of Jagged1 Contributes to the Assembly of the Arterial Wall. Circulation, 2012, 125, 314-323.	1.6	144

#	Article	IF	CITATIONS
55	Cardiac neural crest orchestrates remodeling and functional maturation of mouse semilunar valves. Journal of Clinical Investigation, 2011, 121, 422-430.	8.2	142
56	Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and cardiovascular development. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8916-8921.	7.1	134
57	Tbx1 affects asymmetric cardiac morphogenesis by regulating <i>Pitx2</i> ii the secondary heart field. Development (Cambridge), 2006, 133, 1565-1573.	2.5	132
58	Integration of Bmp and Wnt signaling by Hopx specifies commitment of cardiomyoblasts. Science, 2015, 348, aaa6071.	12.6	132
59	Development Gone Awry. Circulation Research, 2004, 94, 273-283.	4.5	129
60	Cre-mediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse. Developmental Biology, 2004, 267, 190-202.	2.0	129
61	Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery. Journal of Clinical Investigation, 2004, 113, 1051-1058.	8.2	127
62	Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. Journal of Clinical Investigation, 2017, 127, 899-911.	8.2	126
63	Biomarker system for studying muscle, stem cells, and cancer <i>in vivo</i> . FASEB Journal, 2009, 23, 2681-2690.	0.5	125
64	Hopx and Hdac2 Interact to Modulate Gata4 Acetylation and Embryonic Cardiac Myocyte Proliferation. Developmental Cell, 2010, 19, 450-459.	7.0	125
65	Pax3 regulation of FGF signaling affects the progression of embryonic progenitor cells into the myogenic program. Genes and Development, 2008, 22, 1828-1837.	5.9	124
66	Î ² -Hydroxybutyrate suppresses colorectal cancer. Nature, 2022, 605, 160-165.	27.8	120
67	<i>Islet1</i> Derivatives in the Heart Are of Both Neural Crest and Second Heart Field Origin. Circulation Research, 2012, 110, 922-926.	4.5	118
68	PlexinD1 Glycoprotein Controls Migration of Positively Selected Thymocytes into the Medulla. Immunity, 2008, 29, 888-898.	14.3	117
69	A nonclassical bHLH–Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling. Genes and Development, 2008, 22, 166-178.	5.9	116
70	Hippo Signaling Mediators Yap and Taz Are Required in the Epicardium for Coronary Vasculature Development. Cell Reports, 2016, 15, 1384-1393.	6.4	109
71	Cardiac Development and Implications for Heart Disease. New England Journal of Medicine, 2010, 363, 1638-1647.	27.0	105
72	Transgenic Overexpression of Hdac3 in the Heart Produces Increased Postnatal Cardiac Myocyte Proliferation but Does Not Induce Hypertrophy. Journal of Biological Chemistry, 2008, 283, 26484-26489.	3.4	100

#	Article	IF	Citations
73	Molecular markers of cardiac endocardial cushion development. Developmental Dynamics, 2003, 228, 643-650.	1.8	97
74	Identification of minimal enhancer elements sufficient for Pax3 expression in neural crest and implication of Tead2 as a regulator of Pax3. Development (Cambridge), 2004, 131, 829-837.	2.5	95
75	Single-Cell Analysis of Proxy Reporter Allele-Marked Epithelial Cells Establishes Intestinal Stem Cell Hierarchy. Stem Cell Reports, 2014, 3, 876-891.	4.8	93
76	Immune Cells and Immunotherapy for Cardiac Injury and Repair. Circulation Research, 2021, 128, 1766-1779.	4.5	93
77	Tie2Cre-mediated inactivation of plexinD1 results in congenital heart, vascular and skeletal defects. Developmental Biology, 2009, 325, 82-93.	2.0	92
78	Semaphorin Signaling in Cardiovascular Development. Cell Metabolism, 2015, 21, 163-173.	16.2	90
79	Ash2l interacts with Tbx1 and is required during early embryogenesis. Experimental Biology and Medicine, 2010, 235, 569-576.	2.4	89
80	The Role of Neural Crest during Cardiac Development in a Mouse Model of DiGeorge Syndrome. Developmental Biology, 2002, 251, 157-166.	2.0	85
81	Myocardial Notch Signaling Reprograms Cardiomyocytes to a Conduction-Like Phenotype. Circulation, 2012, 126, 1058-1066.	1.6	84
82	Induced regenerationâ€"the progress and promise of direct reprogramming for heart repair. Nature Medicine, 2013, 19, 829-836.	30.7	84
83	Notch signaling regulates murine atrioventricular conduction and the formation of accessory pathways. Journal of Clinical Investigation, 2011, 121, 525-533.	8.2	84
84	Diet-induced Lethality Due to Deletion of the Hdac3 Gene in Heart and Skeletal Muscle. Journal of Biological Chemistry, 2011, 286, 33301-33309.	3.4	83
85	Gata4 and Gata5 Cooperatively Regulate Cardiac Myocyte Proliferation in Mice. Journal of Biological Chemistry, 2010, 285, 1765-1772.	3.4	82
86	H3K9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. ELife, 2019, 8, .	6.0	81
87	Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest. Development (Cambridge), 2015, 142, 2962-71.	2.5	79
88	Pursuing Cardiac Progenitors: Regeneration Redux. Cell, 2005, 120, 295-298.	28.9	77
89	De novo mutations in PLXND1 and REV3L cause Möbius syndrome. Nature Communications, 2015, 6, 7199.	12.8	76
90	Melanocyte-like cells in the heart and pulmonary veins contribute to atrial arrhythmia triggers. Journal of Clinical Investigation, 2009, 119, 3420-36.	8.2	76

#	Article	IF	CITATIONS
91	Hop functions downstream of Nkx2.1 and GATA6 to mediate HDAC-dependent negative regulation of pulmonary gene expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L191-L199.	2.9	74
92	Molecular Determinants of Lung Development. Annals of the American Thoracic Society, 2013, 10, S12-S16.	3.2	73
93	Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development. DMM Disease Models and Mechanisms, 2012, 5, 881-94.	2.4	72
94	\hat{l}^2 -catenin regulates Pax3 and Cdx2 for caudal neural tube closure and elongation. Development (Cambridge), 2014, 141, 148-157.	2.5	72
95	Tumor-Specific PAX3-FKHR Transcription Factor, but Not PAX3, Activates the Platelet-Derived Growth Factor Alpha Receptor. Molecular and Cellular Biology, 1998, 18, 4118-4130.	2.3	71
96	Trichostatin A Abrogates Airway Constriction, but Not Inflammation, in Murine and Human Asthma Models. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 132-138.	2.9	71
97	Persistence of effector memory Th1 cells is regulated by <i>Hopx</i> . European Journal of Immunology, 2010, 40, 2993-3006.	2.9	70
98	<i>NF1</i> Regulates a Ras-Dependent Vascular Smooth Muscle Proliferative Injury Response. Circulation, 2007, 116, 2148-2156.	1.6	69
99	Identification of a novel nuclear localization signal in Tbx1 that is deleted in DiGeorge syndrome patients harboring the 1223delC mutation. Human Molecular Genetics, 2005, 14, 885-892.	2.9	68
100	Circadian control of bile acid synthesis by a KLF15-Fgf15 axis. Nature Communications, 2015, 6, 7231.	12.8	68
101	Foxa2 identifies a cardiac progenitor population with ventricular differentiation potential. Nature Communications, 2017, 8, 14428.	12.8	68
102	Cardiomyocyte Renewal. New England Journal of Medicine, 2009, 361, 86-88.	27.0	67
103	Semaphorin 3d signaling defects are associated with anomalous pulmonary venous connections. Nature Medicine, 2013, 19, 760-765.	30.7	67
104	The LN54 Radiation Hybrid Map of Zebrafish Expressed Sequences. Genome Research, 2001, 11, 2127-2132.	5.5	65
105	<i>Hopx</i> expression defines a subset of multipotent hair follicle stem cells and a progenitor population primed to give rise to K6+ niche cells. Development (Cambridge), 2013, 140, 1655-1664.	2.5	65
106	Developing models of DiGeorge syndrome. Trends in Genetics, 2001, 17, S13-S17.	6.7	61
107	Lgr5 Identifies Progenitor Cells Capable of Taste Bud Regeneration after Injury. PLoS ONE, 2013, 8, e66314.	2.5	61
108	Genetic dissection of plexin signaling in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2194-2199.	7.1	61

#	Article	IF	CITATIONS
109	Plexin D1 determines body fat distribution by regulating the type V collagen microenvironment in visceral adipose tissue. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4363-4368.	7.1	61
110	Persistent expression of Pax3 in the neural crest causes cleft palate and defective osteogenesis in mice. Journal of Clinical Investigation, 2008, 118, 2076-87.	8.2	60
111	Inpp5f Is a Polyphosphoinositide Phosphatase That Regulates Cardiac Hypertrophic Responsiveness. Circulation Research, 2009, 105, 1240-1247.	4.5	59
112	Modulation of cAMP and Ras Signaling Pathways Improves Distinct Behavioral Deficits in a Zebrafish Model of Neurofibromatosis Type 1. Cell Reports, 2014, 8, 1265-1270.	6.4	59
113	Semaphorin 3d and Semaphorin 3e Direct Endothelial Motility through Distinct Molecular Signaling Pathways. Journal of Biological Chemistry, 2014, 289, 17971-17979.	3.4	58
114	Identification of a hypaxial somite enhancer element regulating Pax3 expression in migrating myoblasts and characterization of hypaxial muscle Cre transgenic mice. Genesis, 2005, 41, 202-209.	1.6	57
115	Foxp1/2/4-NuRD Interactions Regulate Gene Expression and Epithelial Injury Response in the Lung via Regulation of Interleukin-6. Journal of Biological Chemistry, 2010, 285, 13304-13313.	3.4	57
116	Histone Deacetylase 3 Regulates Smooth Muscle Differentiation in Neural Crest Cells and Development of the Cardiac Outflow Tract. Circulation Research, 2011, 109, 1240-1249.	4.5	55
117	p57Kip2 Expression Is Enhanced During Mid-Cardiac Murine Development and Is Restricted to Trabecular Myocardium. Pediatric Research, 1999, 45, 635-642.	2.3	51
118	Transcriptional Regulation of Cardiac Development: Implications for Congenital Heart Disease and DiGeorge Syndrome. Pediatric Research, 2000, 48, 717-724.	2.3	50
119	Distinct enhancers at the Pax3 locus can function redundantly to regulate neural tube and neural crest expressions. Developmental Biology, 2010, 339, 519-527.	2.0	50
120	Chromatin and Transcriptional Analysis of Mesoderm Progenitor Cells Identifies HOPX as a Regulator of Primitive Hematopoiesis. Cell Reports, 2017, 20, 1597-1608.	6.4	50
121	Pax3 and Hippo Signaling Coordinate Melanocyte Gene Expression in Neural Crest. Cell Reports, 2014, 9, 1885-1895.	6.4	49
122	The Notch1 transcriptional activation domain is required for development and reveals a novel role for Notch1 signaling in fetal hematopoietic stem cells. Genes and Development, 2014, 28, 576-593.	5.9	49
123	Neurofibromin Deficiency in Mice Causes Exencephaly and Is a Modifier for Splotch Neural Tube Defects. Developmental Biology, 1999, 212, 80-92.	2.0	48
124	Congenital heart disease reminiscent of partial trisomy 2p syndrome in mice transgenic for the transcription factor Lbh. Development (Cambridge), 2005, 132, 3305-3316.	2.5	48
125	Notch and cardiac outflow tract development. Annals of the New York Academy of Sciences, 2010, 1188, 184-190.	3.8	48
126	Pax3, Neural Crest and Cardiovascular Development. Trends in Cardiovascular Medicine, 1996, 6, 255-260.	4.9	45

#	Article	IF	Citations
127	The neurofibromin GAP-related domain rescues endothelial but not neural crest development in Nf1-/mice. Journal of Clinical Investigation, 2006, 116, 2378-84.	8.2	45
128	MRL mice fail to heal the heart in response to ischemia-reperfusion injury. Wound Repair and Regeneration, 2005, 13, 205-208.	3.0	43
129	Increased thymus- and decreased parathyroid-fated organ domains in Splotch mutant embryos. Developmental Biology, 2009, 327, 216-227.	2.0	43
130	CAR-based therapies: opportunities for immuno-medicine beyond cancer. Nature Metabolism, 2022, 4, 163-169.	11.9	43
131	Oligodendrocyte progenitor cell numbers and migration are regulated by the zebrafish orthologs of the NF1 tumor suppressor gene. Human Molecular Genetics, 2010, 19, 4643-4653.	2.9	42
132	MicroRNA-processing Enzyme Dicer Is Required in Epicardium for Coronary Vasculature Development. Journal of Biological Chemistry, 2011, 286, 41036-41045.	3.4	42
133	Cre reporter mouse expressing a nuclear localized fusion of GFP and βâ€galactosidase reveals new derivatives of Pax3â€expressing precursors. Genesis, 2008, 46, 200-204.	1.6	41
134	Cardiomyocyte-Specific Loss of Neurofibromin Promotes Cardiac Hypertrophy and Dysfunction. Circulation Research, 2009, 105, 304-311.	4.5	41
135	Hopx distinguishes hippocampal from lateral ventricle neural stem cells. Stem Cell Research, 2015, 15, 522-529.	0.7	41
136	Tie2-Cre–Induced Inactivation of a Conditional Mutant Nf1 Allele in Mouse Results in a Myeloproliferative Disorder that Models Juvenile Myelomonocytic Leukemia. Pediatric Research, 2004, 55, 581-584.	2.3	40
137	Endothelial lineage-mediated loss of the GATA cofactor Friend of GATA 1 impairs cardiac development. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14030-14035.	7.1	39
138	Zinc transporter Slc39a8 is essential for cardiac ventricular compaction. Journal of Clinical Investigation, 2018, 128, 826-833.	8.2	39
139	Peripherally Induced Tolerance Depends on Peripheral Regulatory T Cells That Require Hopx To Inhibit Intrinsic IL-2 Expression. Journal of Immunology, 2015, 195, 1489-1497.	0.8	38
140	Recent Advances in Cardiac Development With Therapeutic Implications for Adult Cardiovascular Disease. Circulation, 2005, 112, 592-597.	1.6	37
141	A Time to Press Reset and Regenerate Cardiac Stem Cell Biology. JAMA Cardiology, 2019, 4, 95.	6.1	37
142	Murine craniofacial development requires Hdac3-mediated repression of Msx gene expression. Developmental Biology, 2013, 377, 333-344.	2.0	36
143	Strategic Transformation of Population Studies: Recommendations of the Working Group on Epidemiology and Population Sciences From the National Heart, Lung, and Blood Advisory Council and Board of External Experts. American Journal of Epidemiology, 2015, 181, 363-368.	3.4	36
144	Menin expression modulates mesenchymal cell commitment to the myogenic and osteogenic lineages. Developmental Biology, 2009, 332, 116-130.	2.0	35

#	Article	IF	Citations
145	Semaphorin 3E/PlexinD1 signaling is required for cardiac ventricular compaction. JCI Insight, 2019, 4, .	5.0	33
146	Coronary vasculature patterning requires a novel endothelial ErbB2 holoreceptor. Nature Communications, 2016, 7, 12038.	12.8	32
147	Rnf4, a RING protein expressed in the developing nervous and reproductive systems, interacts withGscl, a gene within the DiGeorge critical region. Developmental Dynamics, 2000, 218, 102-111.	1.8	30
148	Analysis of the Structure and Function of the Transcriptional Coregulator HOP,. Biochemistry, 2006, 45, 10584-10590.	2.5	30
149	Menin is required in cranial neural crest for palatogenesis and perinatal viability. Developmental Biology, 2007, 311, 524-537.	2.0	30
150	A radial axis defined by Semaphorin to Neuropilin signaling controls pancreatic islet morphogenesis. Development (Cambridge), 2017, 144, 3744-3754.	2.5	29
151	Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain. ELife, $2016, 5, .$	6.0	29
152	Distinct roles of HF-1b/Sp4 in ventricular and neural crest cells lineages affect cardiac conduction system development. Developmental Biology, 2006, 291, 208-217.	2.0	28
153	Cardiac and vascular functions of the zebrafish orthologues of the type I neurofibromatosis gene <i>NFI</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22305-22310.	7.1	28
154	The nuclear periphery is a scaffold for tissue-specific enhancers. Nucleic Acids Research, 2021, 49, 6181-6195.	14.5	28
155	Regulation of survival in adult hippocampal and glioblastoma stem cell lineages by the homeodomain-only protein HOP. Neural Development, 2008, 3, 13.	2.4	27
156	Resolution of defective dorsal aortae patterning in Sema3Eâ€deficient mice occurs via angiogenic remodeling. Developmental Dynamics, 2013, 242, 580-590.	1.8	27
157	Lbx2, a novel murine homeobox gene related to the Drosophila ladybird genes is expressed in the developing urogenital system, eye and brain. Mechanisms of Development, 1999, 84, 181-184.	1.7	26
158	Endocardial Hippo signaling regulates myocardial growth and cardiogenesis. Developmental Biology, 2018, 440, 22-30.	2.0	26
159	Epicardium-Derived Cardiac Mesenchymal Stem Cells: Expanding the Outer Limit of Heart Repair. Circulation Research, 2012, 110, 904-906.	4.5	25
160	Pax3 and Vertebrate Development., 2000, 137, 459-470.		23
161	Gene Expression Analysis by In Situ Hybridization: Radioactive Probes. , 2000, 137, 87-96.		23
162	Tissue–Tissue Interactions During Morphogenesis of the Outflow Tract. Pediatric Cardiology, 2010, 31, 408-413.	1.3	22

#	Article	IF	CITATIONS
163	Hopping to the BeatHop Regulation of Cardiac Gene Expression. Trends in Cardiovascular Medicine, 2003, 13, 261-264.	4.9	21
164	A Perspective on the Value of Aquatic Models in Biomedical Research. Experimental Biology and Medicine, 2005, 230, 1-7.	2.4	21
165	Homeodomain Only Protein X is down-regulated in human heart failure. Journal of Molecular and Cellular Cardiology, 2011, 50, 1056-1058.	1.9	21
166	The Genetic Landscape of Hematopoietic Stem Cell Frequency in Mice. Stem Cell Reports, 2015, 5, 125-138.	4.8	21
167	An eye on organ development. Nature, 2003, 426, 238-239.	27.8	18
168	Lineage-specific reorganization of nuclear peripheral heterochromatin and H3K9me2 domains. Development (Cambridge), 2019, 146, .	2.5	18
169	Histone methyltransferase activity programs nuclear peripheral genome positioning. Developmental Biology, 2020, 466, 90-98.	2.0	17
170	Perspective: Cardiovascular Disease in the Postgenomic Era—Lessons Learned and Challenges Ahead. Endocrinology, 2002, 143, 2045-2050.	2.8	16
171	Global chromatin relabeling accompanies spatial inversion of chromatin in rod photoreceptors. Science Advances, 2021, 7, eabj3035.	10.3	16
172	Signalling Pathways Regulating Cardiac Neural Crest Migration and Differentiation. Novartis Foundation Symposium, 2007, 283, 152-164.	1.1	15
173	Loss of neurofibromin Ras-GAP activity enhances the formation of cardiac blood islands in murine embryos. ELife, 2015, 4, e07780.	6.0	15
174	Plxnd1 Expression in Thymocytes Regulates Their Intrathymic Migration While That in Thymic Endothelium Impacts Medullary Topology. Frontiers in Immunology, 2013, 4, 392.	4.8	14
175	Currying favor for the heart. Journal of Clinical Investigation, 2008, 118, 850-2.	8.2	14
176	SARS-CoV-2 spike protein binding selectively accelerates substrate-specific catalytic activity of ACE2. Journal of Biochemistry, 2021, 170, 299-306.	1.7	13
177	Competent for commitment: you've got to have heart!. Genes and Development, 2018, 32, 4-13.	5.9	10
178	New approaches under development: cardiovascular embryology applied to heart disease. Journal of Clinical Investigation, 2013, 123, 71-74.	8.2	10
179	Gscl, a gene within the minimal DiGeorge critical region, is expressed in primordial germ cells and the developing pons. Developmental Dynamics, 1998, 212, 86-93.	1.8	9
180	Regulating Heart Development: The Role ofNf1. Cell Cycle, 2003, 2, 95-97.	2.6	8

#	Article	IF	CITATIONS
181	Teasing the Immune System to Repair the Heart. New England Journal of Medicine, 2020, 382, 1660-1662.	27.0	7
182	Developmental Cardiology Comes of Age. Circulation Research, 2000, 87, 833-834.	4.5	6
183	Characterization of the Murine Lbx2 Promoter, Identification of the Human Homologue, and Evaluation as a Candidate for AlstrA¶m Syndrome. Genomics, 2001, 74, 219-227.	2.9	6
184	Kicking the Epicardium Up a Notch. Circulation Research, 2011, 108, 6-8.	4.5	6
185	Epicardial Lineages and Cardiac Repair. Journal of Developmental Biology, 2013, 1, 141-158.	1.7	6
186	Micro-Managing Myocyte Mitosis. Circulation Research, 2011, 109, 611-613.	4.5	4
187	An Epigenetic Roadmap for Cardiomyocyte Differentiation. Circulation Research, 2013, 112, 881-883.	4.5	4
188	Effect of Opt-In vs Opt-Out Framing on Enrollment in a COVID-19 Surveillance Testing Program. JAMA Network Open, 2021, 4, e2112434.	5.9	4
189	Landscape of Hopx expression in cells of the immune system. Heliyon, 2021, 7, e08311.	3.2	4
190	Regulating heart development: the role of Nf1. Cell Cycle, 2003, 2, 96-8.	2.6	4
191	Roger et al. Respond to "Future of Population Studies". American Journal of Epidemiology, 2015, 181, 372-373.	3.4	3
192	Not all stress is bad for your heart. Science, 2021, 374, 264-265.	12.6	3
193	Beating the odds: programming proliferation in the mammalian heart. Genome Medicine, 2018, 10, 36.	8.2	2
194	An Engineered Mouse to Identify Proliferating Cells and Their Derivatives. Frontiers in Cell and Developmental Biology, 2020, 8, 388.	3.7	2
195	What's Important: Reopening Lessons from the Big Leagues' Experiences with COVID-19. Journal of Bone and Joint Surgery - Series A, 2021, 103, 1-3.	3.0	2
196	Uniting Disciplines to Develop Therapeutics: Targeted mRNA Lipid Nanoparticles Reprogram the Immune System <i>In Vivo</i> to Treat Heart Disease. DNA and Cell Biology, 2022, 41, 539-543.	1.9	2
197	A multidisciplinary approach in neurofibromatosis 1–Authors' reply. Lancet Neurology, The, 2015, 14, 30-31.	10.2	1
198	CARTing Away Cardiac Fibrosis. JACC: CardioOncology, 2020, 2, 110-113.	4.0	1

#	Article	IF	Citations
199	Zebrafish Model for NF1., 2012, , 535-547.		1
200	Atlantic City is passé — l'm betting on Chicago. Journal of Clinical Investigation, 2008, 118, 1235-1236.	8.2	1
201	Notch Signaling Regulates Hematopoietic Stem Cell Homeostasis in the Fetal Liver through a Non-Cell-Autonomous Mechanism Blood, 2006, 108, 440-440.	1.4	0
202	Melanocyteâ€like cells in the heart and pulmonary veins contribute to atrial arrhythmia triggers. FASEB Journal, 2010, 24, 180.4.	0.5	0
203	Molecular mechanisms of neural crestâ€related congenital heart disease. FASEB Journal, 2011, 25, 302.4.	0.5	0
204	Neural crest and cardiac development. FASEB Journal, 2011, 25, 176.4.	0.5	0
205	Combinatorial Identification of Broad Association Regions with ChIP-seq Data. , 2016, , .		0
206	Abstract 633: Semaphorin3e-Plexind1 Signaling is Required for Cardiac Ventricular Compaction. Circulation Research, 2019, 125, .	4.5	0
207	CELL FATE DETERMINATION IN 3D: REGULATION OF GENE EXPRESSION VIA CHROMATIN INTERACTIONS WITH THE NUCLEAR MEMBRANE. Transactions of the American Clinical and Climatological Association, 2018, 129, 121-131.	0.5	0
208	Assaying fibroblast activation protein (FAP) expression <i>in vivo</i> and <i>in vitro</i> for possible targeting with chimeric antigen receptor (CAR) T cells. FASEB Journal, 2022, 36, .	0.5	0