
## David W Rooney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/17422/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass<br>Conversion and Biorefinery, 2023, 13, 8383-8401.                                                                                   | 4.6  | 75        |
| 2  | Hydrogen production, storage, utilisation and environmental impacts: a review. Environmental Chemistry Letters, 2022, 20, 153-188.                                                                                                 | 16.2 | 218       |
| 3  | Engineered magnetic oxides nanoparticles as efficientÂsorbents for wastewater remediation: a review.<br>Environmental Chemistry Letters, 2022, 20, 519-562.                                                                        | 16.2 | 28        |
| 4  | Insights on magnetic spinel ferrites for targeted drug delivery and hyperthermia applications.<br>Nanotechnology Reviews, 2022, 11, 372-413.                                                                                       | 5.8  | 39        |
| 5  | Integrating life cycle assessment and characterisation techniques: A case study of biodiesel production utilising waste Prunus Armeniaca seeds (PAS) and a novel catalyst. Journal of Environmental Management, 2022, 304, 114319. | 7.8  | 26        |
| 6  | Role of Ca, Cr, Ga and Gd promotor over lanthanaâ€zirconia–supported Ni catalyst towards<br>H <sub>2</sub> â€ich syngas production through dry reforming of methane. Energy Science and<br>Engineering, 2022, 10, 866-880.         | 4.0  | 21        |
| 7  | Adsorptive removal of some Cl-VOC's as dangerous environmental pollutants using feather-like<br>γ-Al2O3 derived from aluminium waste with life cycle analysis. Chemosphere, 2022, 295, 133795.                                     | 8.2  | 11        |
| 8  | Fungal-derived selenium nanoparticles and their potential applications in electroless silver coatings<br>for preventing pin-tract infections. International Journal of Energy Production and Management,<br>2022, 9, rbac013.      | 3.7  | 11        |
| 9  | Assessment of Lewisâ€Acidic Surface Sites Using Tetrahydrofuran as a Suitable and Smart Probe<br>Molecule. ChemistryOpen, 2022, 11, e202200021.                                                                                    | 1.9  | 5         |
| 10 | Strategies to achieve a carbon neutral society: a review. Environmental Chemistry Letters, 2022, 20, 2277-2310.                                                                                                                    | 16.2 | 336       |
| 11 | Highly basic and active ZnO– <i>x</i> % K <sub>2</sub> O nanocomposite catalysts for the production of methyl ethyl ketone biofuel. Energy Science and Engineering, 2022, 10, 2827-2841.                                           | 4.0  | 3         |
| 12 | Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environmental Chemistry Letters, 2022, 20, 2385-2485.  | 16.2 | 162       |
| 13 | Removal of phthalates from aqueous solution by semiconductor photocatalysis: A review. Journal of<br>Hazardous Materials, 2021, 402, 123461.                                                                                       | 12.4 | 95        |
| 14 | Renewable cellulosic nanocomposites for food packaging to avoid fossil fuel plastic pollution: a review. Environmental Chemistry Letters, 2021, 19, 613-641.                                                                       | 16.2 | 111       |
| 15 | Recent advances in carbon capture storage and utilisation technologies: a review. Environmental<br>Chemistry Letters, 2021, 19, 797-849.                                                                                           | 16.2 | 363       |
| 16 | Type 3 Porous Liquids for the Separation of Ethane and Ethene. ACS Applied Materials & Interfaces, 2021, 13, 932-936.                                                                                                              | 8.0  | 32        |
| 17 | Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environmental Chemistry Letters, 2021, 19, 375-439.                                                                       | 16.2 | 255       |
| 18 | Industrial biochar systems for atmospheric carbon removal: a review. Environmental Chemistry<br>Letters, 2021, 19, 3023-3055.                                                                                                      | 16.2 | 79        |

| #  | Article                                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Circular economy approach of enhanced bifunctional catalytic system of CaO/CeO2 for biodiesel production from waste loquat seed oil with life cycle assessment study. Energy Conversion and Management, 2021, 236, 114040.                                                                 | 9.2  | 72        |
| 20 | MoS2-based nanocomposites: synthesis, structure, and applications in water remediation and energy storage: a review. Environmental Chemistry Letters, 2021, 19, 3645-3681.                                                                                                                 | 16.2 | 48        |
| 21 | Conversion of biomass to biofuels and life cycle assessment: a review. Environmental Chemistry Letters, 2021, 19, 4075-4118.                                                                                                                                                               | 16.2 | 263       |
| 22 | Characterization and kinetic modeling for pyrolytic conversion of cotton stalks. Energy Science and Engineering, 2021, 9, 1908-1918.                                                                                                                                                       | 4.0  | 13        |
| 23 | An experimental study of engine characteristics and tailpipe emissions from modern DI diesel engine<br>fuelled with methanol/diesel blends. Fuel Processing Technology, 2021, 220, 106901.                                                                                                 | 7.2  | 61        |
| 24 | Pyrolysis Kinetic Modeling of a Poly(ethylene-co-vinyl acetate) Encapsulant Found in Waste<br>Photovoltaic Modules. Industrial & Engineering Chemistry Research, 2021, 60, 13492-13504.                                                                                                    | 3.7  | 13        |
| 25 | Bioethanol and biodiesel: Bibliometric mapping, policies and future needs. Renewable and Sustainable<br>Energy Reviews, 2021, 152, 111677.                                                                                                                                                 | 16.4 | 65        |
| 26 | Impact of ionic liquids on silver thermoplastic polyurethane composite membranes for propane/propylene separation. Arabian Journal of Chemistry, 2020, 13, 404-415.                                                                                                                        | 4.9  | 6         |
| 27 | Insight on water remediation application using magnetic nanomaterials and biosorbents.<br>Coordination Chemistry Reviews, 2020, 403, 213096.                                                                                                                                               | 18.8 | 183       |
| 28 | Upcycling brewer's spent grain waste into activated carbon and carbon nanotubes for energy and<br>other applications via twoâ€stage activation. Journal of Chemical Technology and Biotechnology, 2020,<br>95, 183-195.                                                                    | 3.2  | 69        |
| 29 | Hollow germanium nanocrystals on reduced graphene oxide for superior stable lithium-ion half cell and germanium (lithiated)-sulfur battery. Energy Storage Materials, 2020, 26, 414-422.                                                                                                   | 18.0 | 14        |
| 30 | Strategies for mitigation of climate change: a review. Environmental Chemistry Letters, 2020, 18, 2069-2094.                                                                                                                                                                               | 16.2 | 532       |
| 31 | Techno-economic evaluation of biogas production from food waste via anaerobic digestion. Scientific Reports, 2020, 10, 15719.                                                                                                                                                              | 3.3  | 87        |
| 32 | Physicochemical Characterization and Kinetic Modeling Concerning Combustion of Waste Berry Pomace. ACS Sustainable Chemistry and Engineering, 2020, 8, 17573-17586.                                                                                                                        | 6.7  | 31        |
| 33 | Hierarchical graphene-scaffolded mesoporous germanium dioxide nanostructure for<br>high-performance flexible lithium-ion batteries. Energy Storage Materials, 2020, 29, 198-206.                                                                                                           | 18.0 | 12        |
| 34 | Synergism of photocycloaddition and photoinduced electron transfer for multi-state responsive materials with high-stability and reversibility. Chemical Communications, 2020, 56, 4126-4129.                                                                                               | 4.1  | 9         |
| 35 | The production and application of carbon nanomaterials from high alkali silicate herbaceous biomass.<br>Scientific Reports, 2020, 10, 2563.                                                                                                                                                | 3.3  | 93        |
| 36 | Tuning the defects of the triple conducting oxide<br>BaCo <sub>0.4</sub> Fe <sub>0.4</sub> Zr <sub>0.1</sub> Y <sub>0.1</sub> O <sub>3â^îî</sub> perovskite<br>toward enhanced cathode activity of protonic ceramic fuel cells. Journal of Materials Chemistry A,<br>2019, 7, 18365-18372. | 10.3 | 142       |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Upcycling food waste digestate for energy and heavy metal remediation applications. Resources Conservation & Recycling X, 2019, 3, 100015.                                                                                            | 4.2  | 16        |
| 38 | Three-Dimensional Double-Walled Ultrathin Graphite Tube Conductive Scaffold with Encapsulated<br>Germanium Nanoparticles as a High-Areal-Capacity and Cycle-Stable Anode for Lithium-Ion Batteries.<br>ACS Nano, 2019, 13, 7536-7544. | 14.6 | 34        |
| 39 | Anchored monodispersed silicon and sulfur nanoparticles on graphene for high-performance<br>lithiated silicon-sulfur battery. Energy Storage Materials, 2019, 23, 284-291.                                                            | 18.0 | 17        |
| 40 | Reusing, recycling and up-cycling of biomass: A review of practical and kinetic modelling approaches.<br>Fuel Processing Technology, 2019, 192, 179-202.                                                                              | 7.2  | 66        |
| 41 | Is the Fischer-Tropsch Conversion of Biogas-Derived Syngas to Liquid Fuels Feasible at Atmospheric<br>Pressure?. Energies, 2019, 12, 1031.                                                                                            | 3.1  | 8         |
| 42 | Top-down synthesis of iron fluoride/reduced graphene nanocomposite for high performance<br>lithium-ion battery. Electrochimica Acta, 2019, 313, 497-504.                                                                              | 5.2  | 22        |
| 43 | Assessment of the energy recovery potential of waste Photovoltaic (PV) modules. Scientific Reports, 2019, 9, 5267.                                                                                                                    | 3.3  | 56        |
| 44 | Production and characterisation of activated carbon and carbon nanotubes from potato peel waste<br>and their application in heavy metal removal Environmental Science and Pollution Research, 2019, 26,<br>37228-37241.               | 5.3  | 90        |
| 45 | Characterisation of Robust Combustion Catalyst from Aluminium Foil Waste. ChemistrySelect, 2018, 3, 1545-1550.                                                                                                                        | 1.5  | 23        |
| 46 | Physicochemical characterization of miscanthus and its application in heavy metals removal from wastewaters. Environmental Progress and Sustainable Energy, 2018, 37, 1058-1067.                                                      | 2.3  | 41        |
| 47 | Quantification of anaerobic digestion feedstocks for a regional bioeconomy. Proceedings of<br>Institution of Civil Engineers: Waste and Resource Management, 2018, 171, 94-103.                                                       | 0.8  | 5         |
| 48 | Yolk-Shell Germanium@Polypyrrole Architecture with Precision Expansion Void Control for Lithium Ion Batteries. IScience, 2018, 9, 521-531.                                                                                            | 4.1  | 22        |
| 49 | Batch to continuous photocatalytic degradation of phenol using TiO2 and Au-Pd nanoparticles supported on TiO2. Journal of Environmental Chemical Engineering, 2018, 6, 6382-6389.                                                     | 6.7  | 29        |
| 50 | A highly active and synergistic Pt/Mo2C/Al2O3 catalyst for water-gas shift reaction. Molecular<br>Catalysis, 2018, 455, 38-47.                                                                                                        | 2.0  | 36        |
| 51 | Role of flower-like ultrathin Co <sub>3</sub> O <sub>4</sub> nanosheets in water splitting and non-aqueous Li–O <sub>2</sub> batteries. Nanoscale, 2018, 10, 10221-10231.                                                             | 5.6  | 60        |
| 52 | Self-templated fabrication of micro/nano structured iron fluoride for high-performance lithium-ion batteries. Journal of Power Sources, 2018, 396, 371-378.                                                                           | 7.8  | 36        |
| 53 | Liquid–Liquid Equilibria of Ionic Liquids–Water–Acetic Acid Mixtures. Journal of Chemical &<br>Engineering Data, 2017, 62, 653-664.                                                                                                   | 1.9  | 25        |
| 54 | Cross-validatory framework for optimal parameter estimation of KPCA and KPLS models.<br>Chemometrics and Intelligent Laboratory Systems, 2017, 167, 196-207.                                                                          | 3.5  | 16        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | A Facile Green Synthetic Route for the Preparation of Highly Active γ-Al2O3 from Aluminum Foil Waste.<br>Scientific Reports, 2017, 7, 3593.                                                                              | 3.3  | 47        |
| 56 | Investigation of the performance of biocompatible gas hydrate inhibitors via combined experimental and DFT methods. Journal of Chemical Thermodynamics, 2017, 111, 7-19.                                                 | 2.0  | 20        |
| 57 | Facile Synthesis of Hierarchical Porous Three-Dimensional Free-Standing MnCo2O4 Cathodes for<br>Long-Life Li—O2 Batteries. ACS Applied Materials & Interfaces, 2017, 9, 12355-12365.                                     | 8.0  | 60        |
| 58 | Enhanced catalytic activity of Ni on ÎAl 2 O 3 and ZSM-5 on addition of ceria zirconia for the partial oxidation of methane. Applied Catalysis B: Environmental, 2017, 212, 68-79.                                       | 20.2 | 62        |
| 59 | 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nature Communications, 2017, 8, 13949.                     | 12.8 | 342       |
| 60 | Thermal Investigation and Kinetic Modeling of Lignocellulosic Biomass Combustion for Energy<br>Production and Other Applications. Industrial & Engineering Chemistry Research, 2017, 56,<br>12119-12130.                 | 3.7  | 56        |
| 61 | Silver-Modified Î-Al <sub>2</sub> O <sub>3</sub> Catalyst for DME Production. Journal of Physical Chemistry C, 2017, 121, 25018-25032.                                                                                   | 3.1  | 38        |
| 62 | Surface hydrophobicity and acidity effect on alumina catalyst in catalytic methanol dehydration reaction. Journal of Chemical Technology and Biotechnology, 2017, 92, 2952-2962.                                         | 3.2  | 43        |
| 63 | Achieving high specific capacity of lithium-ion battery cathodes by modification with "N–O˙―radicals<br>and oxygen-containing functional groups. Journal of Materials Chemistry A, 2017, 5, 24636-24644.                 | 10.3 | 17        |
| 64 | 3D free-standing hierarchical CuCo <sub>2</sub> O <sub>4</sub> nanowire cathodes for rechargeable<br>lithium–oxygen batteries. Chemical Communications, 2017, 53, 8711-8714.                                             | 4.1  | 51        |
| 65 | Co <sub>9</sub> S <sub>8</sub> activated N/S co-doped carbon tubes in situ grown on carbon nanofibers for efficient oxygen reduction. RSC Advances, 2017, 7, 34763-34769.                                                | 3.6  | 11        |
| 66 | Investigation of Sc doped Sr2Fe1.5Mo0.5O6 as a cathode material for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2017, 343, 237-245.                                                       | 7.8  | 25        |
| 67 | Ultradispersed Nanoarchitecture of LiV3O8 Nanoparticle/Reduced Graphene Oxide with High-Capacity and Long-Life Lithium-Ion Battery Cathodes. Scientific Reports, 2016, 6, 19843.                                         | 3.3  | 26        |
| 68 | Evaluation of strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6â~ʾĨ-based perovskite oxides as intermediate<br>temperature solid oxide fuel cell cathodes. International Journal of Hydrogen Energy, 2016, 41,<br>9538-9546. | 7.1  | 18        |
| 69 | High performance cobalt-free Cu1.4Mn1.6O4 spinel oxide as an intermediate temperature solid oxide<br>fuel cell cathode. Journal of Power Sources, 2016, 315, 140-144.                                                    | 7.8  | 53        |
| 70 | Fabrication and evaluation of NiO/Y2O3-stabilized-ZrO2 hollow fibers for anode-supported micro-tubular solid oxide fuel cells. Ceramics International, 2016, 42, 8559-8564.                                              | 4.8  | 11        |
| 71 | A simply effective double-coating cathode with MnO 2 nanosheets/graphene as functionalized interlayer for high performance lithium-sulfur batteries. Electrochimica Acta, 2016, 207, 198-206.                            | 5.2  | 85        |
| 72 | CoO nanoparticles embedded in three-dimensional nitrogen/sulfur co-doped carbon nanofiber<br>networks as a bifunctional catalyst for oxygen reduction/evolution reactions. Carbon, 2016, 106,<br>84-92.                  | 10.3 | 134       |

| #  | Article                                                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Synthesis of Pr0.6Sr0.4FeO3â^îΖxCe0.9Pr0.1O2â^î́r cobalt-free composite cathodes by a one-pot method for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41, 4005-4015.                                                                                      | 7.1  | 25        |
| 74 | Improved electrochemical performance of Sr 2 Fe 1.5 Mo 0.4 Nb 0.1 O 6â <sup>~</sup> î <sup>′</sup> –Sm 0.2 Ce 0.8 O 2â <sup>~</sup> î <sup>′</sup> composite cathodes by a one-pot method for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41, 3052-3061. | 7.1  | 8         |
| 75 | A bimetallic catalyst on a dual component support for low temperature total methane oxidation.<br>Applied Catalysis B: Environmental, 2016, 187, 408-418.                                                                                                                                                     | 20.2 | 68        |
| 76 | Flash-Sintering and Characterization of La0.8Sr0.2Ga0.8Mg0.2O3-δElectrolytes for Solid Oxide Fuel<br>Cells. Electrochimica Acta, 2016, 196, 487-495.                                                                                                                                                          | 5.2  | 34        |
| 77 | Doubly dual nature of ammonium-based ionic liquids for methane hydrates probed by rocking-rig assembly. RSC Advances, 2016, 6, 23827-23836.                                                                                                                                                                   | 3.6  | 64        |
| 78 | Preparation and characterization of Pr0.6Sr0.4FeO3â^–Ce0.9Pr0.1O2â^ nanofiber structured composite cathode for IT-SOFCs. Ceramics International, 2016, 42, 9311-9314.                                                                                                                                         | 4.8  | 10        |
| 79 | Enhanced durability of Li–O <sub>2</sub> batteries employing vertically standing Ti nanowire array supported cathodes. Journal of Materials Chemistry A, 2016, 4, 4009-4014.                                                                                                                                  | 10.3 | 16        |
| 80 | An effective three-dimensional ordered mesoporous CuCo2O4 as electrocatalyst for Li-O2 batteries.<br>Solid State Ionics, 2016, 289, 17-22.                                                                                                                                                                    | 2.7  | 39        |
| 81 | Fabrication and characterization of SSZ tape cast electrolyte-supported solid oxide fuel cells.<br>Ceramics International, 2016, 42, 5523-5529.                                                                                                                                                               | 4.8  | 8         |
| 82 | Co-tape casting fabrication, field assistant sintering and evaluation of a coke resistant<br>La0.2Sr0.7TiO3–Ni/YSZ functional gradient anode supported solid oxide fuel cell. International<br>Journal of Hydrogen Energy, 2015, 40, 12790-12797.                                                             | 7.1  | 15        |
| 83 | Mild temperature palladium-catalyzed ammoxidation of ethanol to acetonitrile. Applied Catalysis A:<br>General, 2015, 506, 261-267.                                                                                                                                                                            | 4.3  | 28        |
| 84 | Understanding the Flash Sintering of Rareâ€Earthâ€Doped Ceria for Solid OxideÂFuel Cell. Journal of the<br>American Ceramic Society, 2015, 98, 1717-1723.                                                                                                                                                     | 3.8  | 63        |
| 85 | Sandwich nanoarchitecture of LiV <sub>3</sub> O <sub>8</sub> /graphene multilayer nanomembranes<br>via layer-by-layer self-assembly for long-cycle-life lithium-ion battery cathodes. Journal of Materials<br>Chemistry A, 2015, 3, 13717-13723.                                                              | 10.3 | 16        |
| 86 | Re-dispersion of gold supported on a <b>â€~</b> mixed <b>'</b> oxide support. Journal of Lithic Studies, 2015, 1, 120-124.                                                                                                                                                                                    | 0.5  | 3         |
| 87 | Influence of trace substances on methanation catalysts used in dynamic biogas upgrading.<br>Bioresource Technology, 2015, 178, 319-322.                                                                                                                                                                       | 9.6  | 13        |
| 88 | A design strategy of large grain lithium-rich layered oxides for lithium-ion batteries cathode.<br>Electrochimica Acta, 2015, 160, 131-138.                                                                                                                                                                   | 5.2  | 21        |
| 89 | Enhancing Liquid-Phase Olefin–Paraffin Separations Using Novel Silver-Based Ionic Liquids. Journal of<br>Chemical & Engineering Data, 2015, 60, 28-36.                                                                                                                                                        | 1.9  | 26        |
| 90 | Three-dimensional graphene–Co <sub>3</sub> O <sub>4</sub> cathodes for rechargeable<br>Li–O <sub>2</sub> batteries. Journal of Materials Chemistry A, 2015, 3, 1504-1510.                                                                                                                                     | 10.3 | 93        |

| #   | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | An effective three-dimensional ordered mesoporous ZnCo2O4 as electrocatalyst for Li-O2 batteries.<br>Materials Letters, 2015, 158, 84-87.                                                                                          | 2.6  | 27        |
| 92  | Design of an automated solar concentrator for the pyrolysis of scrap rubber. Energy Conversion and Management, 2015, 101, 118-125.                                                                                                 | 9.2  | 50        |
| 93  | Three-dimensional porous carbon nanofiber networks decorated with cobalt-based nanoparticles: A robust electrocatalyst for efficient water oxidation. Carbon, 2015, 94, 680-686.                                                   | 10.3 | 28        |
| 94  | One-dimensional porous La0.5Sr0.5CoO2.91 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. Electrochimica Acta, 2015, 165, 78-84.                                                         | 5.2  | 29        |
| 95  | Preparation of La2NiO4+Î′ powders as a cathode material for SOFC via a PVP-assisted hydrothermal route. Journal of Solid State Electrochemistry, 2015, 19, 957-965.                                                                | 2.5  | 5         |
| 96  | In situ preparation of 3D graphene aerogels@hierarchical Fe <sub>3</sub> O <sub>4</sub><br>nanoclusters as high rate and long cycle anode materials for lithium ion batteries. Chemical<br>Communications, 2015, 51, 1597-1600.    | 4.1  | 76        |
| 97  | Biogas reforming using renewable wind energy and induction heating. Catalysis Today, 2015, 242, 129-138.                                                                                                                           | 4.4  | 40        |
| 98  | Surface modification of LiV3O8 nanosheets via layer-by-layer self-assembly for high-performance rechargeable lithium batteries. Journal of Power Sources, 2014, 257, 319-324.                                                      | 7.8  | 21        |
| 99  | Use of water in aiding olefin/paraffin (liquid+liquid) extraction via complexation with a silver<br>bis(trifluoromethylsulfonyl)imide salt. Journal of Chemical Thermodynamics, 2014, 77, 230-240.                                 | 2.0  | 6         |
| 100 | Facile Synthesis of Anatase TiO <sub>2</sub> Quantumâ€Dot/Grapheneâ€Nanosheet Composites with<br>Enhanced Electrochemical Performance for Lithiumâ€ion Batteries. Advanced Materials, 2014, 26,<br>2084-2088.                      | 21.0 | 281       |
| 101 | Facile synthesis of nanocrystalline LiFePO4/graphene composite as cathode material for high power<br>lithium ion batteries. Electrochimica Acta, 2014, 130, 594-599.                                                               | 5.2  | 31        |
| 102 | Evaluation and mechanistic investigation of a AuPd alloy catalyst for the hydrocarbon selective catalytic reduction (HC-SCR) of NOx. Applied Catalysis B: Environmental, 2014, 147, 864-870.                                       | 20.2 | 25        |
| 103 | Gas Hydrate Inhibition: A Review of the Role of Ionic Liquids. Industrial & Engineering Chemistry<br>Research, 2014, 53, 17855-17868.                                                                                              | 3.7  | 171       |
| 104 | Investigation into the effect of Fe-site substitution on the performance of<br>Sr <sub>2</sub> Fe <sub>1.5</sub> Mo <sub>0.5</sub> O <sub>6â^îÎ</sub> anodes for SOFCs. Journal of<br>Materials Chemistry A, 2014, 2, 17628-17634. | 10.3 | 70        |
| 105 | Application of halohydrocarbons for the re-dispersion of gold particles. Catalysis Science and Technology, 2014, 4, 729.                                                                                                           | 4.1  | 26        |
| 106 | Self-cleaning perovskite type catalysts for the dry reforming of methane. Chinese Journal of Catalysis, 2014, 35, 1337-1346.                                                                                                       | 14.0 | 14        |
| 107 | Moving from Batch to Continuous Operation for the Liquid Phase Dehydrogenation of Tetrahydrocarbazole. Organic Process Research and Development, 2014, 18, 392-401.                                                                | 2.7  | 10        |
| 108 | Investigation into the effect of molybdenum-site substitution on the performance of<br>Sr2Fe1.5Mo0.5O6â^' for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2014,<br>272, 759-765.                    | 7.8  | 47        |

| #   | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | A new family of barium-doped Sr2Fe1.5Mo0.5O6â^Îr´perovskites for application in intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2014, 268, 176-182.                                                                                     | 7.8  | 44        |
| 110 | Viscous Behavior of Imidazolium-Based Ionic Liquids. Industrial & Engineering Chemistry Research, 2013, 52, 16774-16785.                                                                                                                                           | 3.7  | 64        |
| 111 | Structural and magnetic properties of Ni1â^'xZnxFe2O4 (x=0, 0.5 and 1) nanopowders prepared by sol–gel method. Journal of Magnetism and Magnetic Materials, 2013, 348, 44-50.                                                                                      | 2.3  | 74        |
| 112 | In situ synthesis of LiV3O8 nanorods on graphene as high rate-performance cathode materials for rechargeable lithium batteries. Chemical Communications, 2013, 49, 9143.                                                                                           | 4.1  | 30        |
| 113 | High pressure CO2 absorption studies on imidazolium-based ionic liquids: Experimental and simulation approaches. Fluid Phase Equilibria, 2013, 351, 74-86.                                                                                                         | 2.5  | 56        |
| 114 | Fermentable sugars recovery from lignocellulosic waste-newspaper by catalytic hydrolysis.<br>Environmental Technology (United Kingdom), 2013, 34, 3005-3016.                                                                                                       | 2.2  | 6         |
| 115 | Are Alkyl Sulfate-Based Protic and Aprotic Ionic Liquids Stable with Water and Alcohols? A<br>Thermodynamic Approach. Journal of Physical Chemistry B, 2013, 117, 1938-1949.                                                                                       | 2.6  | 33        |
| 116 | Hydrolysis characteristics and kinetics of waste hay biomass as a potential energy crop for<br>fermentable sugars production using autoclave parr reactor system. Industrial Crops and Products,<br>2013, 44, 1-10.                                                | 5.2  | 14        |
| 117 | An In Situ Ionic-Liquid-Assisted Synthetic Approach to Iron Fluoride/Graphene Hybrid Nanostructures<br>as Superior Cathode Materials for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2013,<br>5, 5057-5063.                                         | 8.0  | 64        |
| 118 | Artificial Neural Network for Compositional Ionic Liquid Viscosity Prediction. International Journal of Computational Intelligence Systems, 2012, 5, 460.                                                                                                          | 2.7  | 7         |
| 119 | Structure of the methanol synthesis catalyst determined by in situHERFD XAS and EXAFS. Catalysis Science and Technology, 2012, 2, 373-378.                                                                                                                         | 4.1  | 33        |
| 120 | Activity and deactivation studies for direct dimethyl ether synthesis using CuO–ZnO–Al2O3 with NH4ZSM-5, HZSM-5 or γ-Al2O3. Chemical Engineering Journal, 2012, 203, 201-211.                                                                                      | 12.7 | 84        |
| 121 | Effect of precursor on the performance of alumina for the dehydration of methanol to dimethyl ether. Applied Catalysis B: Environmental, 2012, 127, 307-315.                                                                                                       | 20.2 | 114       |
| 122 | Phase Equilibria of Binary and Ternary Systems Containing ILs, Dodecane, and Cyclohexanecarboxylic<br>Acid. Separation Science and Technology, 2012, 47, 312-324.                                                                                                  | 2.5  | 14        |
| 123 | Acid-catalyzed hydrolysis of cellulose and cellulosic waste using a microwave reactor system. RSC Advances, 2011, 1, 839.                                                                                                                                          | 3.6  | 29        |
| 124 | Dilute phosphoric acid-catalysed hydrolysis of municipal bio-waste wood shavings using autoclave parr reactor system. Bioresource Technology, 2011, 102, 9076-9082.                                                                                                | 9.6  | 28        |
| 125 | Batch and continuous biogas production from grass silage liquor. Bioresource Technology, 2011, 102, 10922-10928.                                                                                                                                                   | 9.6  | 18        |
| 126 | Theoretical and experimental correlations of gas dissolution, diffusion, and thermodynamic<br>properties in determination of gas permeability and selectivity in supported ionic liquid membranes.<br>Advances in Colloid and Interface Science, 2011, 164, 45-55. | 14.7 | 56        |

| #   | Article                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Thermophysical properties of ionic liquids. ACS Symposium Series, 2010, , 43-60.                                                                                         | 0.5  | 6         |
| 128 | Prediction of Gas Solubility using COSMOthermX. ACS Symposium Series, 2010, , 359-383.                                                                                   | 0.5  | 2         |
| 129 | Interfacial tensions of imidazolium-based ionic liquids with water and n-alkanes. Fluid Phase<br>Equilibria, 2010, 294, 139-147.                                         | 2.5  | 59        |
| 130 | Thermophysical Properties of Amino Acid-Based Ionic Liquids. Journal of Chemical & Engineering<br>Data, 2010, 55, 1505-1515.                                             | 1.9  | 118       |
| 131 | Highly selective and efficient hydrogenation of carboxylic acids to alcohols using titania supported<br>Pt catalysts. Chemical Communications, 2010, 46, 6279.           | 4.1  | 184       |
| 132 | Selective hydration of dihydromyrcene in ionic liquids. Green Chemistry, 2010, 12, 628.                                                                                  | 9.0  | 14        |
| 133 | Accounting for clean, fast and high yielding reactions under microwave conditions. Green Chemistry, 2010, 12, 1340.                                                      | 9.0  | 90        |
| 134 | Deactivation and regeneration of ruthenium on silica in the liquid-phase hydrogenation of butan-2-one. Journal of Catalysis, 2009, 265, 80-88.                           | 6.2  | 44        |
| 135 | Development of a QSPR correlation for the parachor of 1,3-dialkyl imidazolium based ionic liquids.<br>Fluid Phase Equilibria, 2009, 283, 31-37.                          | 2.5  | 19        |
| 136 | Evaluation of Gas Solubility Prediction in Ionic Liquids using COSMOthermX. Journal of Chemical<br>& Engineering Data, 2009, 54, 2005-2022.                              | 1.9  | 98        |
| 137 | Thermophysical Properties of Ionic Liquids. Topics in Current Chemistry, 2009, 290, 185-212.                                                                             | 4.0  | 109       |
| 138 | Rheological and heat transfer behaviour of the ionic liquid, [C4mim][NTf2]. International Journal of<br>Heat and Fluid Flow, 2008, 29, 149-155.                          | 2.4  | 72        |
| 139 | Robust partial least squares regression: Part I, algorithmic developments. Journal of Chemometrics, 2008, 22, 1-13.                                                      | 1.3  | 31        |
| 140 | Robust partial least squares regression: Part II, new algorithm and benchmark studies. Journal of<br>Chemometrics, 2008, 22, 14-22.                                      | 1.3  | 9         |
| 141 | Robust partial least squares regression—part III, outlier analysis and application studies. Journal of<br>Chemometrics, 2008, 22, 323-334.                               | 1.3  | 5         |
| 142 | Enzymatic catalysis and electrostatic process intensification for processing of natural oils. Chemical<br>Engineering Journal, 2008, 135, 25-32.                         | 12.7 | 18        |
| 143 | Prediction of Ionic Liquid Properties. II. Volumetric Properties as a Function of Temperature and Pressure. Journal of Chemical & Engineering Data, 2008, 53, 2133-2143. | 1.9  | 139       |
| 144 | Heat Capacities of Ionic Liquids as a Function of Temperature at 0.1 MPa. Measurement and Prediction.<br>Journal of Chemical & Engineering Data, 2008, 53, 2148-2153.    | 1.9  | 173       |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Friedelâ^'Crafts Benzoylation of Anisole in Ionic Liquids: Catalysis, Separation, and Recycle Studies.<br>Organic Process Research and Development, 2008, 12, 1156-1163.                                                             | 2.7 | 19        |
| 146 | Prediction of Ionic Liquid Properties. I. Volumetric Properties as a Function of Temperature at 0.1 MPa.<br>Journal of Chemical & Engineering Data, 2008, 53, 716-726.                                                               | 1.9 | 233       |
| 147 | Thermal Conductivities of Ionic Liquids over the Temperature Range from 293 K to 353 K. Journal of Chemical & Engineering Data, 2007, 52, 1819-1823.                                                                                 | 1.9 | 167       |
| 148 | Palladium-catalyzed liquid-phase hydrogenation/hydrogenolysis of disulfides. Journal of Catalysis, 2007, 249, 93-101.                                                                                                                | 6.2 | 19        |
| 149 | Kinetic Study of the Metal Triflate Catalyzed Benzoylation of Anisole in an Ionic Liquid. Industrial<br>& Engineering Chemistry Research, 2006, 45, 6640-6647.                                                                       | 3.7 | 25        |
| 150 | Supported ionic liquid membranes in nanopore structure for gas separation and transport studies.<br>Desalination, 2006, 199, 535-537.                                                                                                | 8.2 | 36        |
| 151 | Comparison of mass transfer effects in the heterogeneously catalysed hydrogenation of phenyl acetylene in heptane and an ionic liquid. Chemical Engineering Science, 2006, 61, 6995-7006.                                            | 3.8 | 21        |
| 152 | An experimental study of gas transport and separation properties of ionic liquids supported on nanofiltration membranes. Journal of Membrane Science, 2006, 280, 948-956.                                                            | 8.2 | 123       |
| 153 | A study of fluid properties and microfiltration characteristics of room temperature ionic liquids<br>[C10-min][NTf2] and N8881[NTf2] and their polar solvent mixtures. Separation and Purification<br>Technology, 2006, 51, 185-192. | 7.9 | 26        |
| 154 | One-Pot Multistep Synthetic Strategies for the Production of Fenpropimorph Using an Ionic Liquid Solvent. Organic Process Research and Development, 2006, 10, 94-102.                                                                | 2.7 | 34        |
| 155 | Utilisation of ionic liquid solvents for the synthesis of Lily-of-the-Valley fragrance {β-Lilial®;<br>3-(4-t-butylphenyl)-2-methylpropanal}. Journal of Molecular Catalysis A, 2005, 231, 61-66.                                     | 4.8 | 57        |
| 156 | Synthesis of 3-(4-tert-butylphenyl)-2-propen-1-one, a precursor to Lilial®, via an aldol condensation in<br>an ionic liquid. Green Chemistry, 2005, 7, 224-229.                                                                      | 9.0 | 19        |
| 157 | Chloroindate(iii) ionic liquids: recyclable media for Friedel–Crafts acylation reactions. Chemical<br>Communications, 2005, , 903-905.                                                                                               | 4.1 | 60        |
| 158 | A catalytic and mechanistic study of the Friedel–Crafts benzoylation of anisole using zeolites in ionic<br>liquids. Journal of Catalysis, 2004, 227, 44-52.                                                                          | 6.2 | 61        |
| 159 | Marked enantioselectivity enhancements for Diels–Alder reactions in ionic liquids catalysed by<br>platinum diphosphine complexes. Green Chemistry, 2004, 6, 63-67.                                                                   | 9.0 | 72        |
| 160 | Heterogeneously catalysed selective hydrogenation reactions in ionic liquids. Green Chemistry, 2003, 5, 448.                                                                                                                         | 9.0 | 75        |
| 161 | Polymer-Supported Phosphoramidites: Highly Efficient and Recyclable Catalysts for Asymmetric<br>Hydrogenation of Dimethylitaconate and Dehydroamino Acids and Esters ChemInform, 2003, 34, no.                                       | 0.0 | 0         |
| 162 | Polymer-supported phosphoramidites: highly efficient and recyclable catalysts for asymmetric<br>hydrogenation of dimethylitaconate and dehydroamino acids and esters. Tetrahedron: Asymmetry,<br>2003, 14, 1517-1527.                | 1.8 | 47        |

| #   | Article                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | An investigation of the radiochemical stability of ionic liquids. Green Chemistry, 2002, 4, 152-158.                                                                          | 9.0 | 248       |
| 164 | Enhanced Electrochemical Kinetics on Ni <sub>2</sub> P Polar Mediators Integrated with Graphene<br>for Lithium–Sulfur Batteries. Advanced Materials Interfaces, 0, , 2102142. | 3.7 | 2         |