Guy R Humphrey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1741286/publications.pdf

Version: 2024-02-01

186265 138484 5,462 58 28 citations h-index papers

58 g-index 58 58 58 6326 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Harnessing the Power of Catalysis for the Synthesis of CRTH2 Antagonist MK-1029. Organic Process Research and Development, 2022, 26, 648-656.	2.7	12
2	A kinase-cGAS cascade to synthesize a therapeutic STING activator. Nature, 2022, 603, 439-444.	27.8	58
3	Development of a Commercial Manufacturing Route to 2-Fluoroadenine, The Key Unnatural Nucleobase of Islatravir. Organic Process Research and Development, 2021, 25, 395-404.	2.7	16
4	Development of a Robust Manufacturing Route for Molnupiravir, an Antiviral for the Treatment of COVID-19. Organic Process Research and Development, 2021, 25, 2806-2815.	2.7	17
5	Development of a Green and Sustainable Manufacturing Process for Gefapixant Citrate (MK-7264) Part 2: Development of a Robust Process for Phenol Synthesis. Organic Process Research and Development, 2020, 24, 2453-2461.	2.7	15
6	Development of a Green and Sustainable Manufacturing Process for Gefapixant Citrate (MK-7264). Part 6: Development of an Improved Commercial Salt Formation Process. Organic Process Research and Development, 2020, 24, 2498-2504.	2.7	7
7	Development of a Green and Sustainable Manufacturing Process for Gefapixant Citrate (MK-7264) Part 1: Introduction and Process Overview. Organic Process Research and Development, 2020, 24, 2445-2452.	2.7	25
8	Development of a Scalable and Safer Synthesis of Diazeniumdiolates. Organic Process Research and Development, 2020, 24, 1602-1608.	2.7	2
9	Synthesis of Fused Oxepane HIV Integrase Inhibitor MK-1376. Synthesis, 2020, 52, 3378-3388.	2.3	3
10	Preparation of 2-(2 <i>H</i> -Tetrazol-2-yl)benzoic Acids via Regioselective Cu(I) Catalyzed N2 Arylation of Tetrazole. Organic Process Research and Development, 2019, 23, 2354-2361.	2.7	5
11	A Green Chemistry Continuum for a Robust and Sustainable Active Pharmaceutical Ingredient Supply Chain. ACS Sustainable Chemistry and Engineering, 2019, 7, 16937-16951.	6.7	37
12	The Emergence of Universal Chromatographic Methods in the Research and Development of New Drug Substances. Accounts of Chemical Research, 2019, 52, 1990-2002.	15.6	50
13	Scalable Synthesis of Diazeniumdiolates: Application to the Preparation of MK-8150. Organic Letters, 2019, 21, 4210-4214.	4.6	6
14	Combining traditional 2D and modern physical organic-derived descriptors to predict enhanced enantioselectivity for the key aza-Michael conjugate addition in the synthesis of Prevymisâ,,¢ (letermovir). Chemical Science, 2018, 9, 6922-6927.	7.4	22
15	Asymmetric Synthesis of Functionalized <i>trans-</i> Cyclopropoxy Building Block for Grazoprevir. Organic Letters, 2017, 19, 5880-5883.	4.6	28
16	Asymmetric Hydrogen Bonding Catalysis for the Synthesis of Dihydroquinazoline-Containing Antiviral, Letermovir. Journal of the American Chemical Society, 2017, 139, 10637-10640.	13.7	28
17	Potassium isopropyl xanthate (PIX): an ultra-efficient palladium scavenger. Green Chemistry, 2017, 19, 4002-4006.	9.0	26
18	Asymmetric Synthesis of Letermovir Using a Novel Phase-Transfer-Catalyzed Aza-Michael Reaction. Organic Process Research and Development, 2016, 20, 1097-1103.	2.7	43

#	Article	IF	Citations
19	Asymmetric Synthesis of a Potent HIV-1 Integrase Inhibitor. Journal of Organic Chemistry, 2016, 81, 10256-10265.	3.2	5
20	Development of a Multikilogram Scale Synthesis of a TRPV1 Antagonist. Organic Process Research and Development, 2016, 20, 227-232.	2.7	7
21	A Synthesis of a Spirocyclic Macrocyclic Protease Inhibitor for the Treatment of Hepatitis C. Organic Letters, 2016, 18, 1394-1397.	4.6	10
22	Highly Efficient Synthesis of HIV NNRTI Doravirine. Organic Letters, 2015, 17, 1353-1356.	4.6	42
23	Process Development of C–N Cross-Coupling and Enantioselective Biocatalytic Reactions for the Asymmetric Synthesis of Niraparib. Organic Process Research and Development, 2014, 18, 215-227.	2.7	141
24	Development of a Practical, Asymmetric Synthesis of the Hepatitis C Virus Protease Inhibitor MK-5172. Organic Letters, 2013, 15, 4174-4177.	4.6	51
25	Merck's Reaction Review Policy: An Exercise in Process Safety. Organic Process Research and Development, 2013, 17, 1611-1616.	2.7	26
26	Synthesis of Vaniprevir (MK-7009): Lactamization To Prepare a 22-Membered Macrocycle. Journal of Organic Chemistry, 2011, 76, 7804-7815.	3. 2	68
27	Development of a Second-Generation, Highly Efficient Manufacturing Route for the HIV Integrase Inhibitor Raltegravir Potassium. Organic Process Research and Development, 2011, 15, 73-83.	2.7	46
28	Development of a Kilogram-Scale Asymmetric Synthesis of a Potent DP Receptor Antagonist. Organic Process Research and Development, 2010, 14, 787-798.	2.7	19
29	Asymmetric Synthesis of a Potent, Aminopiperidine-Fused Imidazopyridine Dipeptidyl Peptidase IV Inhibitor. Journal of Organic Chemistry, 2010, 75, 1343-1353.	3.2	55
30	Asymmetric Synthesis of Telcagepant, a CGRP Receptor Antagonist for the Treatment of Migraine. Journal of Organic Chemistry, 2010, 75, 7829-7841.	3. 2	82
31	A Practical, Kilogram-Scale Implementation of the Wolffâ^'Kishner Reduction. Organic Process Research and Development, 2009, 13, 576-580.	2.7	34
32	Practical, Highly Convergent, Asymmetric Synthesis of a Selective PPARÎ ³ Modulator. Organic Process Research and Development, 2009, 13, 525-534.	2.7	29
33	Facile reduction of malonate derivatives using NaBH4/Br2: an efficient route to 1,3-diols. Tetrahedron Letters, 2008, 49, 1041-1044.	1.4	19
34	A Rapid, Large-Scale Synthesis of a Potent Cholecystokinin (CCK) 1R Receptor Agonist. Organic Process Research and Development, 2008, 12, 1201-1208.	2.7	32
35	A Novel and Facile One-Pot Method for the Synthesis of N-Substituted Sulfamates. Synthesis, 2008, 2008, 2298-2302.	2.3	3
36	Key green chemistry research areasâ€"a perspective from pharmaceutical manufacturers. Green Chemistry, 2007, 9, 411-420.	9.0	1,371

#	Article	IF	CITATIONS
37	Efficient and Practical Synthesis of (R)-2-Methylpyrrolidine. Journal of Organic Chemistry, 2006, 71, 4336-4338.	3.2	11
38	Development of a Novel, Highly Efficient Halide-Catalyzed Sulfenylation of Indoles. Organic Letters, 2006, 8, 565-568.	4.6	179
39	On the Mechanism of an Asymmetric $\hat{l}\pm,\hat{l}^2$ -Unsaturated Carboxylic Acid Hydrogenation: Application to the Synthesis of a PGD2Receptor Antagonist. Journal of the American Chemical Society, 2006, 128, 17063-17073.	13.7	35
40	A Highly Regioselective Amination of 6-Aryl-2,4-dichloropyrimidine. Organic Letters, 2006, 8, 395-398.	4.6	47
41	Asymmetric Dielsâ^'Alder Reactions of Chiral Cyclopropylidene Imide Dienophiles:Â Preparation ofgem-Dimethyl- and Spirocyclopropane Norbornyl Carboxylic Acids. Journal of Organic Chemistry, 2006, 71, 2192-2195.	3.2	22
42	Practical Methodologies for the Synthesis of Indoles. Chemical Reviews, 2006, 106, 2875-2911.	47.7	1,923
43	Highly Regioselective DABCO-Catalyzed Nucleophilic Aromatic Substitution (SNAr) Reaction of Methyl 2,6-Dichloronicotinate with Phenols. Advanced Synthesis and Catalysis, 2006, 348, 309-312.	4.3	38
44	Selective displacement of aryl fluorides with hydroquinone: synthesis of 4-phenoxyphenols. Tetrahedron Letters, 2005, 46, 7823-7826.	1.4	8
45	Enantioselective Hydrogenation of \hat{l} ±-Aryloxy \hat{l} ±, \hat{l} ²-Unsaturated Acids. Asymmetric Synthesis of \hat{l} ±-Aryloxycarboxylic Acids. Organic Letters, 2004, 6, 3147-3150.	4.6	39
46	Enantiospecific and regioselective opening of 2-alkyl nosylaziridines by indoles mediated by boron trifluoride. Application to a practical synthesis of a GnRH antagonist. Tetrahedron: Asymmetry, 2003, 14, 3503-3515.	1.8	47
47	Highly Regioselective Friedläder Annulations with Unmodified Ketones Employing Novel Amine Catalysts:Â Syntheses of 2-Substituted Quinolines, 1,8-Naphthyridines, and Related Heterocycles. Journal of Organic Chemistry, 2003, 68, 467-477.	3.2	126
48	A Practical and Efficient Preparation of the Releasable Naphthosultam Side Chain of a Novel Anti-MRSA Carbapenem. Journal of Organic Chemistry, 2000, 65, 1399-1406.	3.2	33
49	Efficient and Practical Synthesis of a Potent Anti-MRSA \hat{l}^2 -Methylcarbapenem Containing a Releasable Side Chain. Journal of the American Chemical Society, 1999, 121, 11261-11266.	13.7	30
50	A ruthenium catalyzed oxidation of steroidal alkenes to enones. Tetrahedron Letters, 1996, 37, 3429-3432.	1.4	79
51	Regioselective nucleophilic substitutions of fluorobenzene derivatives. Tetrahedron Letters, 1996, 37, 6439-6442.	1.4	19
52	Stereocomplementary reductions of ring fused enelactams. Tetrahedron Letters, 1995, 36, 7949-7952.	1.4	18
53	A stereoselective synthesis of a key $1\hat{l}^2$ -methylcarbapenem intermediate via a diastereoselective decarboxylation. Tetrahedron Letters, 1994, 35, 2275-2278.	1.4	21
54	Palladium catalyzed diastereoselective addition of secondary alcohols to acyloxyazetidinones. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 2393-2396.	2.2	1

#	Article	IF	CITATIONS
55	Direct conversion of activated alcohols to azides using diphenyl phosphorazidate. A practical alternative to Mitsunobu conditions. Journal of Organic Chemistry, 1993, 58, 5886-5888.	3.2	278
56	An improved procedure for the preparation of 1â€benzylâ€1 <i>H</i> â€1,2,3â€triazoles from benzyl azides. Journal of Heterocyclic Chemistry, 1991, 28, 301-304.	2.6	46
57	Synthesis of 6-(3-Aryl-2-propenyl)-2,3-dihydro-5-hydroxybenzofuran Derivatives by Cross Coupling Reactions. Synthesis, 1989, 1989, 598-603.	2.3	11
58	A novel synthesis of 3â€bromoâ€1,2,4â€oxadiazoles. Journal of Heterocyclic Chemistry, 1989, 26, 23-24.	2.6	11