
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1741244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /Ov	verlack 10	Tf 50742 T
2	Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis?. BioEssays, 2004, 26, 445-453.	2.5	296
3	Ablation of the UPR-Mediator CHOP Restores MotorÂFunction and Reduces Demyelination inÂCharcot-Marie-Tooth 1B Mice. Neuron, 2008, 57, 393-405.	8.1	245
4	Overexpression of IGF-1 in Muscle Attenuates Disease in a Mouse Model of Spinal and Bulbar Muscular Atrophy. Neuron, 2009, 63, 316-328.	8.1	205
5	Mitochondrial abnormalities in spinal and bulbar muscular atrophy. Human Molecular Genetics, 2009, 18, 27-42.	2.9	171
6	Native Functions of the Androgen Receptor Are Essential to Pathogenesis in a Drosophila Model of Spinobulbar Muscular Atrophy. Neuron, 2010, 67, 936-952.	8.1	150
7	Different Intracellular Pathomechanisms Produce Diverse <i>Myelin Protein Zero</i> Neuropathies in Transgenic Mice. Journal of Neuroscience, 2006, 26, 2358-2368.	3.6	144
8	Akt blocks ligand binding and protects against expanded polyglutamine androgen receptor toxicity. Human Molecular Genetics, 2007, 16, 1593-1603.	2.9	137
9	Revisiting default mode network function in major depression: evidence for disrupted subsystem connectivity. Psychological Medicine, 2014, 44, 2041-2051.	4.5	122
10	Synaptophysin I Controls the Targeting of VAMP2/Synaptobrevin II to Synaptic Vesicles. Molecular Biology of the Cell, 2003, 14, 4909-4919.	2.1	104
11	Protein Arginine Methyltransferase 6 Enhances Polyglutamine-Expanded Androgen Receptor Function and Toxicity in Spinal and Bulbar Muscular Atrophy. Neuron, 2015, 85, 88-100.	8.1	89
12	Protein Arginine Methyltransferase 1 and 8 Interact with FUS to Modify Its Sub-Cellular Distribution and Toxicity In Vitro and In Vivo. PLoS ONE, 2013, 8, e61576.	2.5	80
13	Glycolytic-to-oxidative fiber-type switch and mTOR signaling activation are early-onset features of SBMA muscle modified by high-fat diet. Acta Neuropathologica, 2016, 132, 127-144.	7.7	74
14	Post-translational modifications of expanded polyglutamine proteins: impact on neurotoxicity. Human Molecular Genetics, 2009, 18, R40-R47.	2.9	67
15	Snake presynaptic neurotoxins with phospholipase A2 activity induce punctate swellings of neurites and exocytosis of synaptic vesicles. Journal of Cell Science, 2004, 117, 3561-3570.	2.0	63
16	MpzR98C arrests Schwann cell development in a mouse model of early-onset Charcot–Marie–Tooth disease type 1B. Brain, 2012, 135, 2032-2047.	7.6	61
17	Non-neural phenotype of spinal and bulbar muscular atrophy: results from a large cohort of Italian patients. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 810-816.	1.9	59
18	Fluorescence Resonance Energy Transfer Detection of Synaptophysin I and Vesicle-associated Membrane Protein 2 Interactions during Exocytosis from Single Live Synapses. Molecular Biology of the Cell, 2002, 13, 2706-2717.	2.1	58

#	Article	IF	CITATIONS
19	Insulinlike Growth Factor (IGF)-1 Administration Ameliorates Disease Manifestations in a Mouse Model of Spinal and Bulbar Muscular Atrophy. Molecular Medicine, 2012, 18, 1261-1268.	4.4	56
20	Differential autophagy power in the spinal cord and muscle of transgenic ALS mice. Frontiers in Cellular Neuroscience, 2013, 7, 234.	3.7	53
21	Neurotoxic effects of androgens in spinal and bulbar muscular atrophy. Frontiers in Neuroendocrinology, 2011, 32, 416-425.	5.2	50
22	Post-translational Modifications and Protein Quality Control in Motor Neuron and Polyglutamine Diseases. Frontiers in Molecular Neuroscience, 2017, 10, 82.	2.9	49
23	Beyond motor neurons: expanding the clinical spectrum in Kennedy's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 808-812.	1.9	48
24	Aberrant Autophagic Response in The Muscle of A Knock-in Mouse Model of Spinal and Bulbar Muscular Atrophy. Scientific Reports, 2015, 5, 15174.	3.3	47
25	Neurite Extension Occurs in the Absence of Regulated Exocytosis in PC12 Subclones. Molecular Biology of the Cell, 1999, 10, 2919-2931.	2.1	43
26	Rescue of Metabolic Alterations in AR113Q Skeletal Muscle by Peripheral Androgen Receptor Gene Silencing. Cell Reports, 2016, 17, 125-136.	6.4	42
27	Calcium signalling-dependent mitochondrial dysfunction and bioenergetics regulation in respiratory chain Complex II deficiency. Cell Death and Differentiation, 2010, 17, 1855-1866.	11.2	41
28	Androgen-dependent impairment of myogenesis in spinal and bulbar muscular atrophy. Acta Neuropathologica, 2013, 126, 109-121.	7.7	41
29	Cell-autonomous and non-cell-autonomous toxicity in polyglutamine diseases. Progress in Neurobiology, 2012, 97, 152-172.	5.7	39
30	Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy. Science Translational Medicine, 2016, 8, 370ra181.	12.4	37
31	Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients. Human Molecular Genetics, 2017, 26, ddx019.	2.9	37
32	Mutations in TGM6 induce the unfolded protein response in SCA35. Human Molecular Genetics, 2017, 26, 3749-3762.	2.9	36
33	Androgens affect muscle, motor neuron, and survival in a mouse model of SOD1-related amyotrophic lateral sclerosis. Neurobiology of Aging, 2014, 35, 1929-1938.	3.1	31
34	Muscleblind acts as a modifier of FUS toxicity by modulating stress granule dynamics and SMN localization. Nature Communications, 2019, 10, 5583.	12.8	31
35	Pharmacological inactivation of the prion protein by targeting a folding intermediate. Communications Biology, 2021, 4, 62.	4.4	30
36	Taipoxin Induces Synaptic Vesicle Exocytosis and Disrupts the Interaction of Synaptophysin I with VAMP2. Molecular Pharmacology, 2005, 67, 1901-1908.	2.3	28

#	Article	IF	CITATIONS
37	Disease mechanism, biomarker and therapeutics for spinal and bulbar muscular atrophy (SBMA). Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1085-1091.	1.9	28
38	Interplay of the E Box, the Cyclic AMP Response Element, and HTF4/HEB in Transcriptional Regulation of the Neurospecific, Neurotrophin-Inducible <i>vgf</i> Geneâ€. Molecular and Cellular Biology, 1997, 17, 1244-1253.	2.3	27
39	B2 attenuates polyglutamineâ€expanded androgen receptor toxicity in cell and fly models of spinal and bulbar muscular atrophy. Journal of Neuroscience Research, 2010, 88, 2207-2216.	2.9	26
40	Serine phosphorylation and arginine methylation at the crossroads to neurodegeneration. Experimental Neurology, 2015, 271, 77-83.	4.1	26
41	Beta-agonist stimulation ameliorates the phenotype of spinal and bulbar muscular atrophy mice and patient-derived myotubes. Scientific Reports, 2017, 7, 41046.	3.3	26
42	Identification and Expression of Acetylcholinesterase in Octopus vulgaris Arm Development and Regeneration: a Conserved Role for ACHE?. Molecular Neurobiology, 2015, 52, 45-56.	4.0	25
43	NGF-dependent and tissue-specific transcription ofvgfis regulated by a CREB-p300 and bHLH factor interaction. FEBS Letters, 2002, 510, 50-56.	2.8	24
44	MEF2 impairment underlies skeletal muscle atrophy in polyglutamine disease. Acta Neuropathologica, 2020, 140, 63-80.	7.7	23
45	Autophagic and Proteasomal Mediated Removal of Mutant Androgen Receptor in Muscle Models of Spinal and Bulbar Muscular Atrophy. Frontiers in Endocrinology, 2019, 10, 569.	3.5	22
46	Polyglutamine-Expanded Androgen Receptor Alteration of Skeletal Muscle Homeostasis and Myonuclear Aggregation Are Affected by Sex, Age and Muscle Metabolism. Cells, 2020, 9, 325.	4.1	21
47	Huntingtin-mediated axonal transport requires arginine methylation by PRMT6. Cell Reports, 2021, 35, 108980.	6.4	20
48	Gene therapy with AR isoform 2 rescues spinal and bulbar muscular atrophy phenotype by modulating AR transcriptional activity. Science Advances, 2021, 7, .	10.3	20
49	NURR1 and ERR1 Modulate the Expression of Genes of a <i>DRD2</i> Coexpression Network Enriched for Schizophrenia Risk. Journal of Neuroscience, 2020, 40, 932-941.	3.6	19
50	Decoding distinctive features of plasma extracellular vesicles in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2021, 16, 52.	10.8	19
51	In Vitro and In Vivo Modeling of Spinal and Bulbar Muscular Atrophy. Journal of Molecular Neuroscience, 2016, 58, 365-373.	2.3	18
52	From gene to therapy in spinal and bulbar muscular atrophy: Are we there yet?. Molecular and Cellular Endocrinology, 2018, 465, 113-121.	3.2	18
53	The E3 ubiquitin ligase TRIM11 mediates the degradation of congenital central hypoventilation syndrome-associated polyalanine-expanded PHOX2B. Journal of Molecular Medicine, 2012, 90, 1025-1035.	3.9	17
54	New Routes to Therapy for Spinal and Bulbar Muscular Atrophy. Journal of Molecular Neuroscience, 2013, 50, 514-523.	2.3	17

#	Article	IF	CITATIONS
55	Altered ionic currents and amelioration by IGF-1 and PACAP in motoneuron-derived cells modelling SBMA. Biophysical Chemistry, 2017, 229, 68-76.	2.8	17
56	210th ENMC International Workshop: Research and clinical management of patients with spinal and bulbar muscular atrophy, 27–29 March, 2015, Naarden, The Netherlands. Neuromuscular Disorders, 2015, 25, 802-812.	0.6	16
57	Transforming growth factor beta 1 signaling is altered in the spinal cord and muscle of amyotrophic lateral sclerosis mice and patients. Neurobiology of Aging, 2019, 82, 48-59.	3.1	15
58	The pVHL neglected functions, a tale of hypoxia-dependent and -independent regulations in cancer. Open Biology, 2020, 10, 200109.	3.6	14
59	Insulin-like growth factor 1 signaling in motor neuron and polyglutamine diseases: From molecular pathogenesis to therapeutic perspectives. Frontiers in Neuroendocrinology, 2020, 57, 100821.	5.2	13
60	ClC-2-like Chloride Current Alterations in a Cell Model of Spinal and Bulbar Muscular Atrophy, a Polyglutamine Disease. Journal of Molecular Neuroscience, 2021, 71, 662-674.	2.3	13
61	Insights into the genetic epidemiology of spinal and bulbar muscular atrophy: prevalence estimation and multiple founder haplotypes in the Veneto Italian region. European Journal of Neurology, 2019, 26, 519-524.	3.3	12
62	Catechol-O-Methyl Transferase Modulates Cognition in Late Life: Evidence and Implications for Cognitive Enhancement. CNS and Neurological Disorders - Drug Targets, 2012, 11, 195-208.	1.4	12
63	Increased transcription of transglutaminase 1 mediates neuronal death in in vitro models of neuronal stress and Aβ1–42-mediated toxicity. Neurobiology of Disease, 2020, 140, 104849.	4.4	10
64	CAG repeat length in androgen receptor gene is not associated with amyotrophic lateral sclerosis. European Journal of Neurology, 2012, 19, 1373-1375.	3.3	9
65	No effect of <i><scp>AR</scp></i> polyG polymorphism on spinal and bulbar muscular atrophy phenotype. European Journal of Neurology, 2016, 23, 1134-1136.	3.3	8
66	Mitochondrial implications in bulbospinal muscular atrophy (Kennedy disease). Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 112-118.	1.7	6
67	AR cooperates with SMAD4 to maintain skeletal muscle homeostasis. Acta Neuropathologica, 2022, 143, 713-731.	7.7	6
68	Motor Neuron Diseases and Neuroprotective Peptides: A Closer Look to Neurons. Frontiers in Aging Neuroscience, 2021, 13, 723871.	3.4	5
69	Introduction to the Special Issue on Spinal and Bulbar Muscular Atrophy. Journal of Molecular Neuroscience, 2016, 58, 313-316.	2.3	4
70	Clenbuterol-sensitive delayed outward potassium currents in a cell model of spinal and bulbar muscular atrophy. Pflugers Archiv European Journal of Physiology, 2021, 473, 1213-1227.	2.8	3
71	Pituitary Adenylyl Cyclase Activating Polypeptide (PACAP) Signaling and the Cell Cycle Machinery in Neurodegenerative Diseases. Current Pharmaceutical Design, 2019, 24, 3878-3891.	1.9	3
72	The E3 ubiquitin-protein ligase MDM2 is a novel interactor of the von Hippel–Lindau tumor suppressor. Scientific Reports, 2020, 10, 15850.	3.3	2

#	Article	IF	CITATIONS
73	Huntingtin-Mediated Axonal Transport Requires Arginine Methylation by PRMT6. SSRN Electronic Journal, 0, , .	0.4	2
74	Skeletal Muscle Pathogenesis in Polyglutamine Diseases. Cells, 2022, 11, 2105.	4.1	2
75	The role of AR polyQ tract in male breast carcinoma: lesson from an SBMA case. Annals of Oncology, 2017, 28, 1160-1161.	1.2	1
76	Induced pluripotent stem cells for modeling Smith–Magenis syndrome. , 2022, , 217-246.		1
77	Editorial Comment to Castrationâ€resistant prostate cancer diagnosed during leuprorelin treatment for spinal and bulbar muscular atrophy. IJU Case Reports, 2022, 5, 254-254.	0.3	1
78	Skeletal muscle as an emerging therapeutic target in spinal and bulbar muscular atrophy. Clinical Investigation, 2014, 4, 293-295.	0.0	0
79	T197. A DRD2 CO-EXPRESSION GENE SET ENRICHED FOR SCHIZOPHRENIA RISK GENES IS CHARACTERIZED BY A COMMON TRANSCRIPTIONAL REGULATION INVOLVING NURR1 TRANSCRIPTION FACTOR. Schizophrenia Bulletin, 2018, 44, S193-S193.	4.3	0
80	A14â€Arginine methylation of huntingtin is a novel post-translational modification that impacts huntington's disease pathogenesis. , 2018, , .		0
81	A11â€Huntingtin-mediated axonal transport requires arginine methylation by PRMT6. , 2021, , .		0