Xianfeng Qiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1741148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient exciton regulation for high-performance hybrid white organic light-emitting diodes with superior efficiency/CRI/color stability based on blue aggregation-induced emission fluorophor. Organic Electronics, 2022, 101, 106425.	2.6	2
2	In Situ Quantifying the Physical Parameters Determining the Efficiency of OLEDs Relying on Triplet–Triplet Annihilation Up onversion. Advanced Optical Materials, 2022, 10, .	7.3	20
3	Solid experimental evidence for reverse intersystem crossing from high-lying triplet states: A case study on hot exciton mechanism in OLEDs. Applied Physics Letters, 2022, 120, 083501.	3.3	2
4	Visualizing the exciton formation channel in exciplex-based organic light-emitting diodes. Organic Electronics, 2022, 105, 106497.	2.6	2
5	A Promising Multifunctional Deepâ€Blue Fluorophor for Highâ€Performance Monochromatic and Hybrid White OLEDs with Superior Efficiency/Color Stability and Low Efficiency Rollâ€Off. Advanced Optical Materials, 2022, 10, .	7.3	11
6	Novel deep-blue hot exciton material for high-efficiency nondoped organic light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 6596-6602.	5.5	11
7	Improved transient electroluminescence technique based on time-correlated single-photon counting technology to evaluate organic mobility. Frontiers of Optoelectronics, 2022, 15, 1.	3.7	2
8	Exciton Regulation for Organic Light-Emitting Diodes with Improved Efficiency and Roll-Off by Managing the Bipolar Spacer Layers Based on Interfacial Exciplexes. ACS Applied Electronic Materials, 2022, 4, 3088-3098.	4.3	5
9	Regulating excited state of sulfone-locked triphenylamine heteroaromatics for high-efficiency ultralong room-temperature phosphorescence. Chemical Engineering Journal, 2022, 449, 137834.	12.7	19
10	Investigation on the mechanism of charge generation in organic heterojunctions: Analysis of l–V and C–V characteristics. Organic Electronics, 2021, 88, 105979.	2.6	14
11	High efficiency and long lifetime fluorescent white organic light-emitting diodes by phosphor sensitization to strategically manage singlet and triplet excitons. Journal of Materials Chemistry C, 2021, 9, 3626-3634.	5.5	7
12	Unraveling the Important Role of High‣ying Triplet–Lowest Excited Singlet Transitions in Achieving Highly Efficient Deepâ€Blue AIEâ€Based OLEDs. Advanced Materials, 2021, 33, e2006953.	21.0	66
13	Effect of the relationship between the energy levels of host and guest on EL performance of phosphorescence organic light-emitting diodes. Organic Electronics, 2021, 93, 106128.	2.6	3
14	Efficiency Breakthrough of Fluorescence OLEDs by the Strategic Management of "Hot Excitons―at Highly Lying Excitation Triplet Energy Levels. Advanced Functional Materials, 2021, 31, 2106912.	14.9	75
15	Exceptionally efficient deep blue anthracene-based luminogens: design, synthesis, photophysical, and electroluminescent mechanisms. Science Bulletin, 2021, 66, 2090-2098.	9.0	15
16	Nonlinear optoelectronic processes in organic optoelectronic devices: Triplet-triplet annihilation and singlet fission. Materials Science and Engineering Reports, 2020, 139, 100519.	31.8	50
17	High efficiency and low efficiency roll-off all fluorescent white organic light-emitting diodes based on phosphor sensitization. Journal of Materials Chemistry C, 2020, 8, 1666-1672.	5.5	11
18	Mechanistic Study on High Efficiency Deep Blue AlEâ€Based Organic Lightâ€Emitting Diodes by Magnetoâ€Electroluminescence. Advanced Functional Materials, 2020, 30, 1908704.	14.9	51

#	Article	IF	CITATIONS
19	Magnetoâ€Electroluminescence Studies on the Role of Intermolecular Spin–Orbital Coupling Processes for the Transition between Singlet and Triplet Excitons in Exciplexâ€Based Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 2000991.	7.3	4
20	Simultaneous high efficiency/CRI/spectral stability and low efficiency roll-off hybrid white organic light-emitting diodes <i>via</i> simple insertion of ultrathin red/green phosphorescent emitters in a blue exciplex. Journal of Materials Chemistry C, 2020, 8, 12450-12456.	5.5	12
21	High efficiency blue and color-stable hybrid warm white organic light-emitting diodes based on a thermally activated delayed fluorescent material as an assistant host. Journal of Materials Chemistry C, 2020, 8, 13777-13785.	5.5	15
22	Airâ€Processed Perovskite Films with Innerâ€toâ€Outside Passivation for Highâ€Efficiency Solar Cells. Solar Rrl, 2020, 4, 2000410.	5.8	5
23	High efficiency, low efficiency roll-off and long lifetime fluorescent white organic light-emitting diodes based on strategic management of triplet excitons <i>via</i> triplet–triplet annihilation up-conversion and phosphor sensitization. Journal of Materials Chemistry C, 2020, 8, 8077-8084.	5.5	5
24	High efficiency and long lifetime fluorescent organic light-emitting diodes based on cascaded energy transfer processes to efficiently utilize triplet excitons via sensitizer. Organic Electronics, 2020, 84, 105824.	2.6	15
25	High efficiency doping-free warm-white organic light-emitting diodes with strategic-tuning of radiative excitons by combining interfacial exciplex with multi-ultrathin emissive layers. Organic Electronics, 2020, 85, 105876.	2.6	7
26	High efficiency and color quality undoped phosphorescent white organic light-emitting diodes based on simple ultrathin structure in exciplex. Organic Electronics, 2020, 85, 105821.	2.6	5
27	Novel strategy to improve the efficiency roll-off at high luminance and operational lifetime of hybrid white OLEDs <i>via</i> employing an assistant layer with triplet–triplet annihilation up-conversion characteristics. Journal of Materials Chemistry C, 2020, 8, 6577-6586.	5.5	10
28	Highly efficient charge generation and injection in HAT-CN/TAPC heterojunction for high efficiency tandem organic light-emitting diodes. Organic Electronics, 2020, 83, 105745.	2.6	23
29	High-performance white organic light-emitting diodes with doping-free device architecture based on the exciton adjusting interfacial exciplex. Journal of Materials Chemistry C, 2020, 8, 7019-7025.	5.5	11
30	Highly efficient fluorescence/phosphorescence hybrid white organic light-emitting devices based on a bipolar blue emitter to precisely control charges and excitons. Journal of Materials Chemistry C, 2020, 8, 7543-7551.	5.5	20
31	Superior Efficiency and Low-Efficiency Roll-Off White Organic Light-Emitting Diodes Based on Multiple Exciplexes as Hosts Matched to Phosphor Emitters. ACS Applied Materials & Interfaces, 2019, 11, 31078-31086.	8.0	19
32	High efficiency organic light-emitting diodes based on HAT-CN/TAPC heterojunction charge generation layer as charge injectors. Semiconductor Science and Technology, 2019, 34, 105010.	2.0	14
33	Efficient Deep-Blue Fluorescent OLEDs with a High Exciton Utilization Efficiency from a Fully Twisted Phenanthroimidazole–Anthracene Emitter. ACS Applied Materials & Interfaces, 2019, 11, 31139-31146.	8.0	78
34	EL Properties and Exciton Dynamics of Highâ€Performance Dopingâ€Free Hybrid WOLEDs Based on 4Pâ€NPD/Bepp 2 Heterojunction as Blue Emitter. Advanced Optical Materials, 2019, 7, 1900703.	7.3	21
35	Highâ€Performance White Organic Lightâ€Emitting Diodes with High Efficiency, Low Efficiency Rollâ€Off, and Superior Color Stability/Color Rendering Index by Strategic Design of Exciplex Hosts. Advanced Optical Materials, 2019, 7, 1901291.	7.3	22
36	Triplet-triplet annihilation effects in rubrene/C60 OLEDs with electroluminescence turn-on breaking the thermodynamic limit. Nature Communications, 2019, 10, 4683.	12.8	12

#	Article	IF	CITATIONS
37	High efficiency blue/green/yellow/red fluorescent organic light-emitting diodes sensitized by phosphors: general design rules and electroluminescence performance analysis. Journal of Materials Chemistry C, 2019, 7, 11293-11302.	5.5	21
38	An inversion of magnetic field effects in electromer-based organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 1035-1041.	5.5	11
39	High efficiency color-tunable organic light-emitting diodes with ultra-thin emissive layers in blue phosphor doped exciplex. Applied Physics Letters, 2019, 114, .	3.3	15
40	Highly Efficient Blue Fluorescent OLEDs Based on Upper Level Triplet–Singlet Intersystem Crossing. Advanced Materials, 2019, 31, e1807388.	21.0	288
41	Nondoped blue fluorescent organic light-emitting diodes based on benzonitrile-anthracene derivative with 10.06% external quantum efficiency and low efficiency roll-off. Journal of Materials Chemistry C, 2019, 7, 1014-1021.	5.5	74
42	Strategic-tuning of radiative excitons for efficient and stable fluorescent white organic light-emitting diodes. Nature Communications, 2019, 10, 2380.	12.8	84
43	High efficiency warm white organic light-emitting diodes with precise confinement of charge carriers and excitons in the exciplex host system. Journal of Materials Chemistry C, 2019, 7, 7114-7120.	5.5	12
44	Harvesting Triplet Excitons in Lead-Halide Perovskites for Room-Temperature Phosphorescence. Chemistry of Materials, 2019, 31, 2597-2602.	6.7	57
45	Organic Solar Cells Based on High Hole Mobility Conjugated Polymer and Nonfullerene Acceptor with Comparable Bandgaps and Suitable Energy Level Offsets Showing Significant Suppression of <i>J</i> _{sc} – <i>V</i> _{oc} Tradeâ€Off. Solar Rrl, 2019, 3, 1900079.	5.8	25
46	High Efficiency and Low Rollâ€Off Hybrid WOLEDs by Using a Deep Blue Aggregationâ€Induced Emission Material Simultaneously as Blue Emitter and Phosphor Host. Advanced Optical Materials, 2019, 7, 1801539.	7.3	23
47	Upper Excited Triplet State-Mediated Intersystem Crossing for Anti-Kasha's Fluorescence: Potential Application in Deep-Ultraviolet Sensing. Journal of Physical Chemistry C, 2019, 123, 5761-5766.	3.1	21
48	Precise regulation of the emissive layer for ultra-high performance white organic light-emitting diodes in an exciplex forming co-host system. Materials Chemistry Frontiers, 2019, 3, 640-649.	5.9	17
49	Highly Efficient Deep Blue Aggregation-Induced Emission Organic Molecule: A Promising Multifunctional Electroluminescence Material for Blue/Green/Orange/Red/White OLEDs with Superior Efficiency and Low Roll-Off. ACS Photonics, 2019, 6, 767-778.	6.6	75
50	Improvement of the Electroluminescence Performance of Exciplexâ€Based OLEDs by Effective Utilization of Longâ€Range Coupled Electron–Hole Pairs. Advanced Optical Materials, 2019, 7, 1801648.	7.3	37
51	Design and performance study of high efficiency/low efficiency roll-off/high CRI hybrid WOLEDs based on aggregation-induced emission materials as fluorescent emitters. Materials Chemistry Frontiers, 2019, 3, 2652-2658.	5.9	17
52	Energy level modulation of donor–acceptor alternating random conjugated copolymers for achieving high-performance polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 15335-15343.	5.5	7
53	Correlated magnetic field effects on carriers and excitons in single-carrier exciplex-based organic photodiodes. Physical Chemistry Chemical Physics, 2019, 21, 26413-26419.	2.8	2
54	High efficiency and low roll-off all fluorescence white organic light-emitting diodes by the formation of interface exciplex. Organic Electronics, 2019, 67, 72-78.	2.6	18

#	Article	IF	CITATIONS
55	Trap-Assisted Enhanced Bias Illumination Stability of Oxide Thin Film Transistor by Praseodymium Doping. ACS Applied Materials & Interfaces, 2019, 11, 5232-5239.	8.0	34
56	Magnetic field effects on the quenching of triplet excitons in exciplex-based organic light emitting diodes. Journal of Materials Chemistry C, 2018, 6, 5721-5726.	5.5	31
57	Highly efficient inverted organic light-emitting diodes with organic p-n junction as electron injection layer. Organic Electronics, 2018, 58, 185-190.	2.6	8
58	Realizing efficient red thermally activated delayed fluorescence organic light-emitting diodes using phenoxazine/phenothiazine-phenanthrene hybrids. Organic Electronics, 2018, 59, 32-38.	2.6	35
59	High efficiency hybrid white organic light-emitting diodes based on a simple and efficient exciton regulation emissive layer structure. RSC Advances, 2018, 8, 40883-40893.	3.6	2
60	Improvement of efficiency and its roll-off at high brightness in white organic light-emitting diodes by strategically managing triplet excitons in the emission layer. Journal of Materials Chemistry C, 2018, 6, 10793-10803.	5.5	27
61	Molecular engineering of two-dimensional hybrid perovskites with broadband emission for white light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 10301-10307.	5.5	38
62	Properties of Highly Efficient Charge Generation and Transport of Multialternating Organic Heterojunctions and Its Application in Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2018, 4, 1800177.	5.1	16
63	Efficient Roomâ€Temperature Phosphorescence from Organic–Inorganic Hybrid Perovskites by Molecular Engineering. Advanced Materials, 2018, 30, e1707621.	21.0	126
64	Electrical pumped energy up-conversion: A non-linear electroluminescence process mediated by triplet-triplet annihilation. Organic Electronics, 2017, 46, 1-6.	2.6	28
65	C70/C70:pentacene/pentacene organic heterojunction as the connecting layer for high performance tandem organic light-emitting diodes: Mechanism investigation of electron injection and transport. Journal of Applied Physics, 2017, 121, 115502.	2.5	7
66	Highly efficient charge generation and electron injection of m-MTDATA/m-MTDATA:HAT-CN/HAT-CN organic heterojunction on ITO cathode for high efficiency inverted white organic light-emitting diodes. Journal of Applied Physics, 2017, 122, 125501.	2.5	9
67	Precise Exciton Allocation for Highly Efficient White Organic Lightâ€Emitting Diodes with Low Efficiency Rollâ€Off Based on Blue Thermally Activated Delayed Fluorescent Exciplex Emission. Advanced Optical Materials, 2017, 5, 1700415.	7.3	95
68	C ₇₀ /Pentacene Organic Heterojunction as Charge Generator to Realize Highly Efficient Charge Carrier Injection in Organic Light‣mitting Diodes: Performance and Mechanism Analysis. Advanced Materials Interfaces, 2016, 3, 1600081.	3.7	9
69	Simple-Structured Phosphorescent Warm White Organic Light-Emitting Diodes with High Power Efficiency and Low Efficiency Roll-off. ACS Applied Materials & Interfaces, 2016, 8, 10093-10097.	8.0	62
70	Managing Excitons and Charges for High-Performance Fluorescent White Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 28780-28788.	8.0	57
71	Highly efficient inverted organic light-emitting diodes using composite organic heterojunctions as electrode-independent injectors. Journal of Materials Chemistry C, 2016, 4, 8731-8737.	5.5	12
72	Management of Singlet and Triplet Excitons: A Universal Approach to Highâ€Efficiency All Fluorescent WOLEDs with Reduced Efficiency Rollâ€Off Using a Conventional Fluorescent Emitter. Advanced Optical Materials, 2016, 4, 1067-1074.	7.3	84

#	Article	IF	CITATIONS
73	Highâ€Performance Hybrid White Organic Lightâ€Emitting Diodes with Superior Efficiency/Color Rendering Index/Color Stability and Low Efficiency Rollâ€Off Based on a Blue Thermally Activated Delayed Fluorescent Emitter. Advanced Functional Materials, 2016, 26, 3306-3313.	14.9	154
74	Achieving Extreme Utilization of Excitons by an Efficient Sandwich-Type Emissive Layer Architecture for Reduced Efficiency Roll-Off and Improved Operational Stability in Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 3150-3159.	8.0	34
75	14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes. Nanoscale, 2016, 8, 6379-6385.	5.6	151
76	Revealing Underlying Processes Involved in Light Soaking Effects and Hysteresis Phenomena in Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500279.	19.5	271
77	Photovoltaic behaviour of lead methylammonium triiodide perovskite solar cells down to 80 K. Journal of Materials Chemistry A, 2015, 3, 11762-11767.	10.3	135
78	Effect of temperature on the efficiency of organometallic perovskite solar cells. Journal of Energy Chemistry, 2015, 24, 729-735.	12.9	54
79	Trap-induced photoconductivity in singlet fission pentacene diodes. Applied Physics Letters, 2014, 105, 033303.	3.3	4
80	Inter-triplet spin–spin interaction effects on inter-conversion between different spin states in intermediate triplet–triplet pairs towards singlet fission. Organic Electronics, 2014, 15, 2168-2172.	2.6	5
81	Boosting the Photocurrent Density of p-Type Solar Cells Based on Organometal Halide Perovskite-Sensitized Mesoporous NiO Photocathodes. ACS Applied Materials & Interfaces, 2014, 6, 12609-12617.	8.0	50
82	In-situ investigation of interfacial effects on charge accumulation and extraction in organic solar cells based on transient photocurrent studies. Organic Electronics, 2014, 15, 1624-1630.	2.6	7
83	Effect of the molecular weight of poly(3-hexylthiophene) on the performance of solid-state dye-sensitized solar cells. RSC Advances, 2013, 3, 14037.	3.6	8
84	Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells. Applied Physics Letters, 2013, 102, .	3.3	36
85	Thermal annealing effect on internal electrical polarization in organic solar cells. Organic Electronics, 2013, 14, 2192-2197.	2.6	18
86	High efficiency blue phosphorescent organic light-emitting diodes with a multiple quantum well structure for reduced efficiency roll-off. Optics Express, 2012, 20, 24411.	3.4	21
87	Low sublimation temperature cesium pivalate complex as an efficient electron injection material for organic light-emitting diode devices. Organic Electronics, 2011, 12, 1957-1962.	2.6	18
88	Highâ€Performance, Phosphorescent, Topâ€Emitting Organic Lightâ€Emitting Diodes with p–i–n Homojunctions. Advanced Functional Materials, 2011, 21, 1681-1686.	14.9	35
89	Observation of hole hopping via dopant in MoOx-doped organic semiconductors: Mechanism analysis and application for high performance organic light-emitting devices. Journal of Applied Physics, 2010, 107, .	2.5	44
90	Trap-free space-charge-limited electron transport in amorphous tin(IV) phthalocyanine dichloride thin film. Journal Physics D: Applied Physics, 2010, 43, 215402.	2.8	11

#	Article	IF	CITATIONS
91	Controlling charge balance and exciton recombination by bipolar host in single-layer organic light-emitting diodes. Journal of Applied Physics, 2010, 108, .	2.5	69
92	Lead(IV) dioxide: an effective electron injection material to realize high-efficiency inverted top-emitting organic light-emitting diodes. Semiconductor Science and Technology, 2009, 24, 105027.	2.0	2
93	Tungsten oxide doped N,N′-di(naphthalen-1-yl)-N,N′-diphenyl-benzidine as hole injection layer for high performance organic light-emitting diodes. Journal of Applied Physics, 2009, 105, .	2.5	19
94	Origin of improvement in device performance via the modification role of cesium hydroxide doped tris(8-hydroxyquinoline) aluminum interfacial layer on ITO cathode in inverted bottom-emission organic light-emitting diodes. Organic Electronics, 2009, 10, 266-274.	2.6	26
95	A Dithienylbenzothiadiazole Pure Red Molecular Emitter with Electron Transport and Exciton Selfâ€Confinement for Nondoped Organic Redâ€Lightâ€Emitting Diodes. Advanced Materials, 2008, 20, 4172-4175.	21.0	18
96	The role of molybdenum oxide as anode interfacial modification in the improvement of efficiency and stability in organic light-emitting diodes. Organic Electronics, 2008, 9, 985-993.	2.6	144
97	A soluble nonionic surfactant as electron injection material for high-efficiency inverted bottom-emission organic light emitting diodes. Applied Physics Letters, 2008, 93, 123310.	3.3	39
98	Cesium hydroxide doped tris-(8-hydroxyquinoline) aluminum as an effective electron injection layer in inverted bottom-emission organic light emitting diodes. Applied Physics Letters, 2008, 92, .	3.3	35
99	Observation of Vibrational Phosphorescence Peaks at Room Temperature and Their Impacts on Triplet–Triplet Annihilation. Advanced Optical Materials, 0, , 2200074.	7.3	2