Rae Silver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1741088/publications.pdf

Version: 2024-02-01

26630 37204 10,892 188 56 96 h-index citations g-index papers 193 193 193 6561 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Arginine Vasopressin-Containing Neurons of the Suprachiasmatic Nucleus Project to CSF. ENeuro, 2021, 8, ENEURO.0363-20.2021.	1.9	10
2	Editorial: Development of Circadian Clock Functions. Frontiers in Neuroscience, 2021, 15, 735007.	2.8	2
3	Phase Gradients and Anisotropy of the Suprachiasmatic Network: Discovery of Phaseoids. ENeuro, 2021, 8, ENEURO.0078-21.2021.	1.9	6
4	Identification of the suprachiasmatic nucleus venous portal system in the mammalian brain. Nature Communications, 2021, 12, 5643.	12.8	17
5	The Suprachiasmatic Nucleus and the Circadian Timekeeping System of the Body. , 2021, , 1-49.		2
6	Overexpression of striatal D2 receptors reduces motivation thereby decreasing food anticipatory activity. European Journal of Neuroscience, 2020, 51, 71-81.	2.6	16
7	Elevated zinc transporter ZnT3 in the dentate gyrus of mast cellâ€deficient mice. European Journal of Neuroscience, 2020, 51, 1504-1513.	2.6	2
8	Circadian rhythmicity and the community of clockworkers. European Journal of Neuroscience, 2020, 51, 2314-2328.	2.6	1
9	Circadian and Circannual Rhythms and Hormones. , 2019, , 579-587.		O
10	Musashiâ€⊋ and related stem cell proteins in the mouse suprachiasmatic nucleus and their potential role in circadian rhythms. International Journal of Developmental Neuroscience, 2019, 75, 44-58.	1.6	3
11	Cells have sex chromosomes and circadian clocks: Implications for organismal level functions. Physiology and Behavior, 2018, 187, 6-12.	2.1	4
12	Connectome of the Suprachiasmatic Nucleus: New Evidence of the Core-Shell Relationship. ENeuro, 2018, 5, ENEURO.0205-18.2018.	1.9	38
13	Brain Activity during Methamphetamine Anticipation in a Non-Invasive Self-Administration Paradigm in Mice. ENeuro, 2018, 5, ENEURO.0433-17.2018.	1.9	5
14	Differential localization of <scp>PER</scp> 1 and <scp>PER</scp> 2 in the brain master circadian clock. European Journal of Neuroscience, 2017, 45, 1357-1367.	2.6	20
15	Function of Metallothionein-3 in Neuronal Cells: Do Metal Ions Alter Expression Levels of MT3?. International Journal of Molecular Sciences, 2017, 18, 1133.	4.1	19
16	Circadian Regulation of Endocrine Functions. , 2017, , 345-369.		1
17	Deconstructing Circadian Rhythmicity with Models and Manipulations. Trends in Neurosciences, 2016, 39, 405-419.	8.6	39
18	The Suprachiasmatic Nucleus and the Circadian Timekeeping System of the Body. , 2016, , 2241-2288.		2

#	Article	IF	CITATIONS
19	Neuroendocrine underpinnings of sex differences in circadian timing systems. Journal of Steroid Biochemistry and Molecular Biology, 2016, 160, 118-126.	2.5	65
20	The effects of pharmacological modulation of the serotonin 2C receptor on goal-directed behavior in mice. Psychopharmacology, 2016, 233, 615-624.	3.1	33
21	Frequent marijuana use, binge drinking and mental health problems among undergraduates. American Journal on Addictions, 2015, 24, 499-506.	1.4	78
22	Selective Distribution of Retinal Input to Mouse SCN Revealed in Analysis of Sagittal Sections. Journal of Biological Rhythms, 2015, 30, 251-257.	2.6	35
23	Suprachiasmatic nucleus as the site of androgen action on circadian rhythms. Hormones and Behavior, 2015, 73, 1-7.	2.1	57
24	A novel strategy for dissecting goal-directed action and arousal components of motivated behavior with a progressive hold-down task Behavioral Neuroscience, 2015, 129, 269-280.	1.2	40
25	Circadian Insights into Motivated Behavior. Current Topics in Behavioral Neurosciences, 2015, 27, 137-169.	1.7	30
26	The Suprachiasmatic Nucleus and the Circadian Timekeeping System of the Body. , 2015, , 1-49.		7
27	Relevance of Network Organization in SCN Clock Function. , 2015, , 149-175.		1
28	Circadian rhythms have broad implications for understanding brain and behavior. European Journal of Neuroscience, 2014, 39, 1866-1880.	2.6	67
29	Jay S. Rosenblatt, Ph.D., 1924-2014. Developmental Psychobiology, 2014, 56, 1164-1165.	1.6	0
30	Sex differences in circadian timing systems: Implications for disease. Frontiers in Neuroendocrinology, 2014, 35, 111-139.	5.2	246
31	Mast cells on the mind: new insights and opportunities. Trends in Neurosciences, 2013, 36, 513-521.	8.6	148
32	Blunted Refeeding Response and Increased Locomotor Activity in Mice Lacking FoxO1 in Synapsin- <i>Cre</i> i>–Expressing Neurons. Diabetes, 2013, 62, 3373-3383.	0.6	21
33	Time of day influences the voluntary intake and behavioral response to methamphetamine and food reward. Pharmacology Biochemistry and Behavior, 2013, 110, 117-126.	2.9	11
34	The Suprachiasmatic Nucleus and the Circadian Timekeeping System of the Body., 2013,, 1847-1888.		2
35	Combining Small-Volume Metabolomic and Transcriptomic Approaches for Assessing Brain Chemistry. Analytical Chemistry, 2013, 85, 3136-3143.	6.5	24
36	Is Cognitive Functioning Impaired in Methamphetamine Users? A Critical Review. Neuropsychopharmacology, 2012, 37, 586-608.	5.4	195

#	Article	IF	CITATIONS
37	Dose-Dependent Effects of Androgens on the Circadian Timing System and Its Response to Light. Endocrinology, 2012, 153, 2344-2352.	2.8	60
38	Antibodies for Assessing Circadian Clock Proteins in the Rodent Suprachiasmatic Nucleus. PLoS ONE, 2012, 7, e35938.	2.5	25
39	Phase waves in the suprachiasmatic nucleus (Commentary on Hong <i>et al.</i>). European Journal of Neuroscience, 2012, 35, 1416-1416.	2.6	0
40	Serotonin of mast cell origin contributes to hippocampal function. European Journal of Neuroscience, 2012, 36, 2347-2359.	2.6	68
41	Twelveâ€hour days in the brain and behavior of split hamsters. European Journal of Neuroscience, 2012, 36, 2556-2566.	2.6	22
42	Effect of time of day on methamphetamine anticipation and neural activation. FASEB Journal, 2012, 26, lb794.	0.5	0
43	Food anticipation depends on oscillators and memories in both body and brain. Physiology and Behavior, 2011, 104, 562-571.	2.1	37
44	Light exposure induces short- and long-term changes in the excitability of retinorecipient neurons in suprachiasmatic nucleus. Journal of Neurophysiology, 2011, 106, 576-588.	1.8	21
45	Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus. European Journal of Neuroscience, 2011, 33, 1851-1865.	2.6	69
46	Targeted mutation of the calbindin D _{28k} gene selectively alters nonvisual photosensitivity. European Journal of Neuroscience, 2011, 33, 2299-2307.	2.6	6
47	Blood-borne donor mast cell precursors migrate to mast cell-rich brain regions in the adult mouse. Journal of Neuroimmunology, 2011, 240-241, 142-146.	2.3	18
48	Divergent photic thresholds in the non-image-forming visual system: entrainment, masking and pupillary light reflex. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 745-750.	2.6	52
49	Androgens Modulate Structure and Function of the Suprachiasmatic Nucleus Brain Clock. Endocrinology, 2011, 152, 1970-1978.	2.8	85
50	Sleep, Rhythms, and the Endocrine Brain: Influence of Sex and Gonadal Hormones. Journal of Neuroscience, 2011, 31, 16107-16116.	3.6	233
51	Specializations of gastrinâ€releasing peptide cells of the mouse suprachiasmatic nucleus. Journal of Comparative Neurology, 2010, 518, 1249-1263.	1.6	28
52	Reorganization of Suprachiasmatic Nucleus Networks under 24-h LDLD Conditions. Journal of Biological Rhythms, 2010, 25, 19-27.	2.6	35
53	Oscillators entrained by food and the emergence of anticipatory timing behaviors. Sleep and Biological Rhythms, 2010, 8, 120-136.	1.0	19
54	Photoperiod and Reproductive Condition Are Associated with Changes in RFamide-Related Peptide (RFRP) Expression in Syrian Hamsters (<i>Mesocricetus auratus</i>). Journal of Biological Rhythms, 2010, 25, 176-185.	2.6	74

#	Article	IF	Citations
55	Circadian Trafficking of Calbindin-ir in Fibers of SCN Neurons. Journal of Biological Rhythms, 2009, 24, 488-496.	2.6	18
56	Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13582-13587.	7.1	274
57	Mast cells are necessary for the hypothermic response to LPS-induced sepsis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R595-R602.	1.8	28
58	Basis of Robustness and Resilience in the Suprachiasmatic Nucleus: Individual Neurons Form Nodes in Circuits that Cycle Daily. Journal of Biological Rhythms, 2009, 24, 340-352.	2.6	28
59	Neural basis of timing and anticipatory behaviors. European Journal of Neuroscience, 2009, 30, 1643-1649.	2.6	48
60	Brain mast cells link the immune system to anxiety-like behavior. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18053-18057.	7.1	154
61	<i>Circadian and Homeostatic Factors in Arousal Nonals of the New York Academy of Sciences, 2008, 1129, 263-274.</i>	3.8	37
62	Nature's food anticipatory experiment: entrainment of locomotor behavior, suprachiasmatic and dorsomedial hypothalamic nuclei by suckling in rabbit pups. European Journal of Neuroscience, 2008, 27, 432-443.	2.6	45
63	Targeted mutation of the calbindin D _{28K} gene disrupts circadian rhythmicity and entrainment. European Journal of Neuroscience, 2008, 27, 2907-2921.	2.6	34
64	Targeted mutation of the calbindin D28Kgene disrupts circadian rhythmicity and entrainment. European Journal of Neuroscience, 2008, 28, 1030-1030.	2.6	0
65	Dayâ€length encoding through tonic photic effects in the retinorecipient SCN region. European Journal of Neuroscience, 2008, 28, 2108-2115.	2.6	30
66	Gonadectomy reveals sex differences in circadian rhythms and suprachiasmatic nucleus androgen receptors in mice. Hormones and Behavior, 2008, 53, 422-430.	2.1	104
67	Residual effects of intranasal methamphetamine on sleep, mood, and performance. Drug and Alcohol Dependence, 2008, 94, 258-262.	3.2	33
68	Abundance of Degrees of Freedom. , 2008, , 3-3.		1
69	Neurotech for Neuroscience: Unifying Concepts, Organizing Principles, and Emerging Tools. Journal of Neuroscience, 2007, 27, 11807-11819.	3.6	84
70	Minireview: The Neuroendocrinology of the Suprachiasmatic Nucleus as a Conductor of Body Time in Mammals. Endocrinology, 2007, 148, 5640-5647.	2.8	93
71	A Role for Androgens in Regulating Circadian Behavior and the Suprachiasmatic Nucleus. Endocrinology, 2007, 148, 5487-5495.	2.8	105
72	Gates and Oscillators II: Zeitgebers and the Network Model of the Brain Clock. Journal of Biological Rhythms, 2007, 22, 14-25.	2.6	56

#	Article	IF	Citations
73	Two forces for arousal: Pitting hunger versus circadian influences and identifying neurons responsible for changes in behavioral arousal. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20078-20083.	7.1	46
74	Gene-Hormone-Environment Interactions in the Regulation of Aggressive Responses: Elegant Analysis of Complex Behavior. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, pe55.	3.9	0
75	Cellular localization and function of DARPP-32 in the rodent retina. European Journal of Neuroscience, 2007, 25, 3233-3242.	2.6	9
76	Brain mast cell relationship to neurovasculature during development. Brain Research, 2007, 1171, 18-29.	2.2	91
77	Building a Mammalian Brain Clock. FASEB Journal, 2007, 21, A144.	0.5	0
78	The regulation of neuroendocrine function: Timing is everything. Hormones and Behavior, 2006, 49, 557-574.	2.1	127
79	Diurnal regulation of the gastrin-releasing peptide receptor in the mouse circadian clock. European Journal of Neuroscience, 2006, 23, 1047-1053.	2.6	56
80	Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2410-2415.	7.1	497
81	DARPP-32 Involvement in the Photic Pathway of the Circadian System. Journal of Neuroscience, 2006, 26, 9434-9438.	3.6	26
82	Neurogenesis and ontogeny of specific cell phenotypes within the hamster suprachiasmatic nucleus. Developmental Brain Research, 2005, 157, 8-18.	1.7	31
83	Two Antiphase Oscillations Occur in Each Suprachiasmatic Nucleus of Behaviorally Split Hamsters. Journal of Neuroscience, 2005, 25, 9017-9026.	3.6	93
84	The Suprachiasmatic Nucleus is a Functionally Heterogeneous Timekeeping Organ. Methods in Enzymology, 2005, 393, 451-465.	1.0	88
85	Signaling within the Master Clock of the Brain: Localized Activation of Mitogen-Activated Protein Kinase by Gastrin-Releasing Peptide. Journal of Neuroscience, 2005, 25, 2447-2454.	3.6	79
86	Orchestrating time: arrangements of the brain circadian clock. Trends in Neurosciences, 2005, 28, 145-151.	8.6	405
87	Phenotype Matters: Identification of Light-Responsive Cells in the Mouse Suprachiasmatic Nucleus. Journal of Neuroscience, 2004, 24, 68-75.	3.6	112
88	Targeted Microlesions Reveal Novel Organization of the Hamster Suprachiasmatic Nucleus. Journal of Neuroscience, 2004, 24, 2449-2457.	3.6	67
89	Resetting the brain clock: time course and localization of mPER1 and mPER2 protein expression in suprachiasmatic nuclei during phase shifts. European Journal of Neuroscience, 2004, 19, 1105-1109.	2.6	114
90	Temporal and spatial expression patterns of canonical clock genes and clockâ€controlled genes in the suprachiasmatic nucleus. European Journal of Neuroscience, 2004, 19, 1741-1748.	2.6	120

#	Article	IF	CITATIONS
91	All amacrine neurons of the rat retina show diurnal and circadian rhythms of parvalbumin immunoreactivity. Cell and Tissue Research, 2004, 315, 181-186.	2.9	25
92	Organization of suprachiasmatic nucleus projections in Syrian hamsters (<i>Mesocricetus) Tj ETQq0 0 0 rgBT /Ov 361-379.</i>	erlock 10 ⁻ 1.6	Tf 50 707 To 131
93	The role of Period1 in non-photic resetting of the hamster circadian pacemaker in the suprachiasmatic nucleus. Neuroscience Letters, 2004, 362, 87-90.	2.1	40
94	A short half-life GFP mouse model for analysis of suprachiasmatic nucleus organization. Brain Research, 2003, 964, 279-287.	2.2	54
95	Suckling and genital stroking induces Fos expression in hypothalamic oxytocinergic neurons of rabbit pups. Developmental Brain Research, 2003, 143, 119-128.	1.7	63
96	Mast cells in the rat brain synthesize gonadotropin-releasing hormone. Journal of Neurobiology, 2003, 56, 113-124.	3.6	32
97	Expression of the circadian clock gene <i>Period 1</i> in neuroendocrine cells: an investigation using mice with a <i>Per1</i> ::GFP transgene. European Journal of Neuroscience, 2003, 17, 212-220.	2.6	67
98	The eye is necessary for a circadian rhythm in the suprachiasmatic nucleus. Nature Neuroscience, 2003, 6, 111-112.	14.8	128
99	Brain mast cells are influenced by chemosensory cues associated with estrus induction in female prairie voles (Microtus ochrogaster). Hormones and Behavior, 2003, 44, 377-384.	2.1	22
100	Gates and Oscillators: A Network Model of the Brain Clock. Journal of Biological Rhythms, 2003, 18, 339-350.	2.6	116
101	Phase shifts and Per gene expression in mouse suprachiasmatic nucleus. NeuroReport, 2003, 14, 1247-1251.	1.2	8
102	Cellular Location and Circadian Rhythm of Expression of the Biological Clock GenePeriod 1in the Mouse Retina. Journal of Neuroscience, 2003, 23, 7670-7676.	3.6	83
103	Calbindin Influences Response to Photic Input in Suprachiasmatic Nucleus. Journal of Neuroscience, 2003, 23, 8820-8826.	3.6	43
104	Phase Resetting Light Pulses Induce (i>Per1 < /i> and Persistent Spike Activity in a Subpopulation of Biological Clock Neurons. Journal of Neuroscience, 2003, 23, 1441-1450.	3.6	120
105	Food-entrained circadian rhythms are sustained in arrhythmic <i>Clk/Clk</i> mutant mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R57-R67.	1.8	103
106	GnRH, brain mast cells and behavior. Progress in Brain Research, 2002, 141, 315-325.	1.4	20
107	Circadian Rhythms in the Endocrine System. , 2002, , 33-91.		25
108	Biotinylated Dextran Amine as a Marker for Fetal Hypothalamic Homografts and Their Efferents. Experimental Neurology, 2002, 174, 72-80.	4.1	5

#	Article	IF	CITATIONS
109	Stimuli from Conspecifics Influence Brain Mast Cell Population in Male Rats. Hormones and Behavior, 2002, 42, 1-12.	2.1	33
110	Differential induction and localization of mPer1 and mPer2 during advancing and delaying phase shifts. European Journal of Neuroscience, 2002, 16, 1531-1540.	2.6	180
111	Direct Innervation of GnRH Neurons by Encephalic Photoreceptors in Birds. Journal of Biological Rhythms, 2001, 16, 39-49.	2.6	82
112	Expression of <i>Period </i> Genes: Rhythmic and Nonrhythmic Compartments of the Suprachiasmatic Nucleus Pacemaker. Journal of Neuroscience, 2001, 21, 7742-7750.	3.6	215
113	Diurnal and circadian variation of protein kinase C immunoreactivity in the rat retina. Journal of Comparative Neurology, 2001, 439, 140-150.	1.6	38
114	Changes in Brain Gonadotropin-Releasing Hormone- and Vasoactive Intestinal Polypeptide-like Immunoreactivity Accompanying Reestablishment of Photosensitivity in Male Dark-Eyed Juncos (Junco) Tj ETQq0	0 ûs gBT /	Owarlock 10
115	Mast Cells Migrate from Blood to Brain. Journal of Neuroscience, 2000, 20, 401-408.	3.6	204
116	Gonadal Steroids Regulate the Number and Activational State of Mast Cells in the Medial Habenula 1. Endocrinology, 2000, 141, 1178-1186.	2.8	55
117	CSF signaling in physiology and behavior. Progress in Brain Research, 2000, 125, 415-433.	1.4	16
118	Retinal Innervation of Calbindin-D28K Cells in the Hamster Suprachiasmatic Nucleus: Ultrastructural Characterization. Journal of Biological Rhythms, 2000, 15, 103-111.	2.6	69
119	Coitus-induced activation of c-fos and gonadotropin-releasing hormone in hypothalamic neurons in female rabbits. Molecular Brain Research, 2000, 78, 69-79.	2.3	14
120	Gonadal Steroids Regulate the Number and Activational State of Mast Cells in the Medial Habenula. Endocrinology, 2000, 141, 1178-1186.	2.8	18
121	Localization of a Suprachiasmatic Nucleus Subregion Regulating Locomotor Rhythmicity. Journal of Neuroscience, 1999, 19, 5574-5585.	3.6	123
122	Calbindin expression in the hamster SCN is influenced by circadian genotype and by photic conditions. NeuroReport, 1999, 10, 3159-3163.	1.2	27
123	Multiple regulatory elements result in regional specificity in circadian rhythms of neuropeptide expression in mouse SCN. NeuroReport, 1999, 10, 3165-3174.	1.2	83
124	Fiber outgrowth from anterior hypothalamic and cortical xenografts in the third ventricle., 1998, 391, 133-145.		17
125	Brain mast cells lack the c-kit receptor: immunocytochemical evidence. Journal of Neuroimmunology, 1998, 90, 207-211.	2.3	40
126	Suprachiasmatic Nucleus Organization. Chronobiology International, 1998, 15, 475-487.	2.0	158

#	Article	IF	CITATIONS
127	The Suprachiasmatic Nucleus and Circadian Function: an Interoduction. Chronobiology International, 1998, 15, vii-x.	2.0	12
128	Output Signals of the Scn. Chronobiology International, 1998, 15, 535-550.	2.0	95
129	Mast cells in the brain: evidence and functional significance. Trends in Neurosciences, 1996, 19, 25-31.	8.6	214
130	Calbindin-D28K cells in the hamster SCN express light-induced Fos. NeuroReport, 1996, 7, 1224.	1.2	127
131	Oxytocin and vasopressin immunoreactivity in rabbit hypothalamus during estrus, late pregnancy, and postpartum. Brain Research, 1996, 720, 7-16.	2.2	42
132	A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature, 1996, 382, 810-813.	27.8	726
133	Restoration of Circadian Rhythmicity by Transplants of SCN "Micropunches". Journal of Biological Rhythms, 1996, 11, 163-171.	2.6	47
134	Immunocompetence, mast cells and sexual behaviour. Ibis, 1996, 138, 101-111.	1.9	3
135	Studying restoration of brain function with fetal tissue grafts: Optimal models. Behavioral and Brain Sciences, 1995, 18, 70-70.	0.7	0
136	Intraventricular Prolactin Inhibits Hypothalamic Vasoactive-Intestinal Polypeptide-Expression in Doves. Journal of Neuroendocrinology, 1995, 7, 881-887.	2.6	9
137	Location of neurons projecting to the hypophysial stalk ? median eminence in ring doves (Streptopelia) Tj ETQq1	1 0.7843	14 ₄ rgBT /Ove
138	Location of neurons projecting to the hypophysial stalk ? median eminence in ring doves (Streptopelia) Tj ETQq0	0 <u>0 r</u> gBT /	Oyerlock 10
139	Increased VIP and Decreased GnRH Expression in Photorefractory Dark-Eyed Juncos (Junco hyemalis). General and Comparative Endocrinology, 1994, 93, 128-136.	1.8	64
140	Host resets phase of grafted suprachiasmatic nucleus: a 2-DG study of time course of entrainment. Brain Research, 1994, 655, 168-176.	2.2	7
141	Host resets phase of grafted SCN: influence of implant site, tissue specificity and pineal secretion. Neuroscience Letters, 1994, 176, 80-84.	2.1	8
142	Suprachiasmatic nucleus lesions abolish and fetal grafts restore circadian gnawing rhythms in hamsters. Restorative Neurology and Neuroscience, 1994, 6, 135-143.	0.7	12
143	Heavy water lengthens the period of free-running rhythms in lesioned hamsters bearing SCN grafts. Physiology and Behavior, 1993, 54, 599-604.	2.1	6
144	Reproductive Behavior, Endocrine State, and the Distribution of GnRH-like Immunoreactive Mast Cells in Dove Brain. Hormones and Behavior, 1993, 27, 283-295.	2.1	58

#	Article	IF	CITATIONS
145	Lithium lengthens the period of circadian rhythms in lesioned hamsters bearing SCN grafts. Biological Psychiatry, 1993, 34, 75-83.	1.3	44
146	Immunocytochemical Distribution of GnRH in the Brain of Adult and Posthatching Great Tit Parus major and Ring Dove Streptopelia roseogrisea. Ornis Scandinavica, 1992, 23, 222.	1.0	28
147	Tracing SCN graft efferents with Dil. Brain Research, 1991, 554, 15-21.	2.2	23
148	Neither triazolam nor activity phase advance circadian locomotor activity in SCN-lesioned hamsters bearing fetal SCN transplants. Brain Research, 1991, 566, 40-45.	2.2	14
149	Circadian Locomotor Rhythms, but Not Photoperiodic Responses, Survive Surgical Isolation of the SCN in Hamsters. Journal of Biological Rhythms, 1991, 6, 97-113.	2.6	55
150	Distribution of vasoactive intestinal peptide-like and neurophysin-like immunoreactive neurons and acetylcholinesterase staining in the ring dove hypothalamus with emphasis on the question of an avian suprachiasmatic nucleus. Cell and Tissue Research, 1990, 259, 331-339.	2.9	44
151	Time course of peptidergic expression in fetal suprachiasmatic nucleus transplanted into adult hamster. Developmental Brain Research, 1990, 57, 1-6.	1.7	28
152	Dispersed cell suspensions of fetal SCN restore circadian rhythmicity in SCN-lesioned adult hamsters. Brain Research, 1990, 525, 45-58.	2.2	120
153	Vasoactive intestinal polypeptide-like immunoreactivity during reproduction in doves: Influence of experience and number of offspring. Hormones and Behavior, 1990, 24, 215-231.	2.1	48
154	Retinal projections in quail (Coturnix coturnix). Visual Neuroscience, 1989, 3, 377-387.	1.0	19
155	Review: Brain, Hormone and Behavior Interactions in Avian Reproduction: Status and Prospectus. Condor, 1989, 91, 966.	1.6	27
156	Retinohypothalamic Projections and the Suprachiasmatic Nucleus in Birds. Brain, Behavior and Evolution, 1989, 34, 73-83.	1.7	51
157	Coexpression of opsin- and VIP-like-immunoreactivity in CSF-contacting neurons of the avian brain. Cell and Tissue Research, 1988, 253, 189-98.	2.9	199
158	The development of a developmentalist: Daniel S. Lehrman. Developmental Psychobiology, 1987, 20, 563-570.	1.6	6
159	Circadian and Interval Timing Mechanisms in the Ovulatory Cycle of the Hen. Poultry Science, 1986, 65, 2355-2362.	3.4	15
160	Stimulus requirements for prolactin and LH secretion in incubating ring doves. General and Comparative Endocrinology, 1985, 59, 246-256.	1.8	39
161	Associative factors and the development of pecking in the ring dove. Developmental Psychobiology, 1985, 18, 447-460.	1.6	17
162	Parental Care in an Ecological Perspective: A Quantitative Analysis of Avian Subfamilies. American Zoologist, 1985, 25, 823-840.	0.7	142

#	Article	IF	Citations
163	Reproductive Physiology and Behavior Interactions in Nonmammalian Vertebrates., 1985,, 101-182.		17
164	Prolactin and parenting in the pigeon family. The Journal of Experimental Zoology, 1984, 232, 617-625.	1.4	56
165	Reproductive Mechanisms: Interaction of Circadian and Interval Timing. Annals of the New York Academy of Sciences, 1984, 423, 488-514.	3.8	38
166	Automatic monitoring of temperature and/or location: A computer-controlled radiotelemetry system. Behavior Research Methods, 1984, 16, 533-537.	1.3	4
167	Microcomputers in psychology laboratory courses. Behavior Research Methods, 1984, 16, 150-152.	1.3	5
168	Retinohypothalamic pathway in the dove demonstrated by anterograde HRP. Brain Research Bulletin, 1983, 10, 715-718.	3.0	28
169	Avian Behavioral Endocrinology. BioScience, 1983, 33, 567-572.	4.9	16
170	Biparental Care. , 1983, , 145-171.		3
171	Timing of incubation bouts by ring doves (Streptopelia risoria) Journal of Comparative Psychology (Washington, D C: 1983), 1983, 97, 213-225.	0.5	24
172	Social interactions and androgen levels in birds. General and Comparative Endocrinology, 1981, 44, 454-463.	1.8	69
173	Social interactions and androgen levels in birds. General and Comparative Endocrinology, 1981, 44, 464-469.	1.8	25
174	Plasma luteinizing hormone in male ring doves during the breeding cycle. General and Comparative Endocrinology, 1980, 42, 19-24.	1.8	52
175	Termination of incubation in doves: Influence of egg fertility and absence of mate. Hormones and Behavior, 1980, 14, 93-106.	2.1	22
176	What determines the pattern of sharing of incubation and brooding in ring doves?. Journal of Comparative and Physiological Psychology, 1979, 93, 481-492.	1.8	23
177	Display of courtship and incubation behavior during the reproductive cycle of the male ring dove (Streptopelia risoria). Hormones and Behavior, 1977, 8, 8-21.	2.1	14
178	Effects of the antiandrogen cyproterone acetate on reproduction in male and female ring doves. Hormones and Behavior, 1977, 9, 371-379.	2.1	13
179	Estrogen-progesterone regulation of nest-building and incubation behavior in ovariectomized ring doves (Streptopelia risoria) Journal of Comparative and Physiological Psychology, 1975, 88, 256-263.	1.8	71
180	Radioimmunoassay of Plasma Progesterone During the Reproductive Cycle of Male and Female Ring Doves (<i>Streptopelia risoria</i>) ¹ . Endocrinology, 1974, 94, 1547-1554.	2.8	66

#	Article	IF	CITATIONS
181	Activation of lordosis in ovariectomized guinea pigs by free and esterified forms of estrone, estradiol- $17\hat{l}^2$ and estriol. Physiology and Behavior, 1974, 13, 251-255.	2.1	43
182	The nucleus basalis of the pigeon: A singleâ€unit analysis. Journal of Comparative Neurology, 1973, 147, 119-128.	1.6	71
183	Situational and hormonal determinants of courtship, aggressive and incubation behavior in male ring doves (Streptopelia risoria). Hormones and Behavior, 1973, 4, 163-172.	2.1	21
184	Inhibition of Crop—Sac Growth by Dexamethasone in Ring Doves (<i>Streptopelia risoria</i>)1. Endocrinology, 1973, 92, 1568-1571.	2.8	1
185	Role of adrenal hormones in incubation behavior of male ring doves (Streptopelia risoria) Journal of Comparative and Physiological Psychology, 1973, 84, 453-463.	1.8	26
186	Role of gonadal hormones in incubation behavior of male ring doves (Streptopelia risoria) Journal of Comparative and Physiological Psychology, 1973, 84, 464-471.	1.8	23
187	Functional Characteristics of Single Units in the Spinal Trigeminal Nucleus of the Pigeon. Brain, Behavior and Evolution, 1973, 8, 287-303.	1.7	34
188	Mutual Shaping of Circadian Body-Wide Synchronization by the Suprachias matic Nucleus and Circulating Steroids. Frontiers in Behavioral Neuroscience, $0, 16, \ldots$	2.0	6