
Richard J Traub

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1741033/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxytocin inhibits hindpaw hyperalgesia induced by orofacial inflammation combined with stress. Molecular Pain, 2022, 18, 174480692210895.	2.1	3
2	Early and Late Transcriptional Changes in Blood, Neural, and Colon Tissues in Rat Models of Stress-Induced and Comorbid Pain Hypersensitivity Reveal Regulatory Roles in Neurological Disease. Frontiers in Pain Research, 2022, 3, .	2.0	1
3	Spinal CCK1 Receptors Contribute to Somatic Pain Hypersensitivity Induced by Malocclusion via a Reciprocal Neuron-Glial Signaling Cascade. Journal of Pain, 2022, 23, 1629-1645.	1.4	4
4	Differential Activation of Colonic Afferents and Dorsal Horn Neurons Underlie Stress-Induced and Comorbid Visceral Hypersensitivity in Female Rats. Journal of Pain, 2021, 22, 1283-1293.	1.4	3
5	Spinal CCK contributes to somatic hyperalgesia induced by orofacial inflammation combined with stress in adult female rats. European Journal of Pharmacology, 2021, 913, 174619.	3.5	4
6	Valproate reverses stress-induced somatic hyperalgesia and visceral hypersensitivity by up-regulating spinal 5-HT2C receptor expression in female rats. Neuropharmacology, 2020, 165, 107926.	4.1	11
7	Down-regulation of Spinal 5-HT2A and 5-HT2C Receptors Contributes to Somatic Hyperalgesia induced by Orofacial Inflammation Combined with Stress. Neuroscience, 2020, 440, 196-209.	2.3	14
8	Peripheral mechanisms contribute to comorbid visceral hypersensitivity induced by preexisting orofacial pain and stress in female rats. Neurogastroenterology and Motility, 2020, 32, e13833.	3.0	8
9	The Role of Descending Pain Modulation in Chronic Primary Pain: Potential Application of Drugs Targeting Serotonergic System. Neural Plasticity, 2019, 2019, 1-16.	2.2	29
10	Epigenetic Modulation of Visceral Pain. , 2019, , 141-156.		0
11	Opposing Roles of Estradiol and Testosterone on Stress-Induced Visceral Hypersensitivity in Rats. Journal of Pain, 2018, 19, 764-776.	1.4	44
12	Extracellular signalâ€regulated kinase activation in the spinal cord contributes to visceral hypersensitivity induced by craniofacial injury followed by stress. Neurogastroenterology and Motility, 2018, 30, e13161.	3.0	16
13	Do MicroRNAs Modulate Visceral Pain?. BioMed Research International, 2018, 2018, 1-10.	1.9	2
14	Estrogen-dependent visceral hypersensitivity following stress in rats. Molecular Pain, 2016, 12, 174480691665414.	2.1	29
15	Histone hyperacetylation modulates spinal type II metabotropic glutamate receptor alleviating stress-induced visceral hypersensitivity in female rats. Molecular Pain, 2016, 12, 174480691666072.	2.1	31
16	Estradiol modulates visceral hyperalgesia by increasing thoracolumbar spinal GluN2B subunit activity in female rats. Neurogastroenterology and Motility, 2015, 27, 775-786.	3.0	21
17	Epigenetic upregulation of metabotropic glutamate receptor 2 in the spinal cord attenuates oestrogen-induced visceral hypersensitivity. Gut, 2015, 64, 1913-1920.	12.1	61
18	A Clinically Relevant Animal Model of Temporomandibular Disorder and Irritable Bowel Syndrome Comorbidity. Journal of Pain, 2014, 15, 956-966.	1.4	37

#	Article	IF	CITATIONS
19	Sex differences and hormonal modulation of deep tissue pain. Frontiers in Neuroendocrinology, 2013, 34, 350-366.	5.2	74
20	Estrogen Receptor β Activation Is Antinociceptive in a Model of Visceral Pain in the Rat. Journal of Pain, 2012, 13, 685-694.	1.4	44
21	Sex differences in spinal processing of transient and inflammatory colorectal stimuli in the rat. Pain, 2012, 153, 1965-1973.	4.2	31
22	Spinal estrogen receptor alpha mediates estradiol-induced pronociception in a visceral pain model in the rat. Pain, 2011, 152, 1182-1191.	4.2	60
23	Brainâ€derived neurotrophic factor modulates antiretroviralâ€induced mechanical allodynia in the mouse. Journal of Neuroscience Research, 2011, 89, 1551-1565.	2.9	24
24	Sex differences in the activation of the spinoparabrachial circuit by visceral pain. Physiology and Behavior, 2009, 97, 205-212.	2.1	34
25	Emerging therapies and novel approaches to visceral pain. Drug Discovery Today: Therapeutic Strategies, 2009, 6, 89-95.	0.5	22
26	A Rat Model of Chronic Postinflammatory Visceral Pain Induced by Deoxycholic Acid. Gastroenterology, 2008, 135, 2075-2083.	1.3	68
27	The visceromotor response to colorectal distention fluctuates with the estrous cycle in rats. Neuroscience, 2008, 154, 1562-1567.	2.3	87
28	Estrogen alters spinal NMDA receptor activity via a PKA signaling pathway in a visceral pain model in the rat. Pain, 2008, 137, 540-549.	4.2	78
29	Studying sex and gender differences in pain and analgesia: A consensus report. Pain, 2007, 132, S26-S45.	4.2	797
30	Estrogen Modulation of Morphine Analgesia of Visceral Pain in Female Rats Is Supraspinally and Peripherally Mediated. Journal of Pain, 2007, 8, 494-502.	1.4	47
31	Pelvic Nerve Input Mediates Descending Modulation of Homovisceral Processing in the Thoracolumbar Spinal Cord of the Rat. Gastroenterology, 2007, 133, 1544-1553.	1.3	15
32	Differences in spinal distribution and neurochemical phenotype of colonic afferents in mouse and rat. Journal of Comparative Neurology, 2006, 494, 246-259.	1.6	112
33	Persistent pain model reveals sex difference in morphine potency. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R300-R306.	1.8	81
34	Sex differences in morphine-induced analgesia of visceral pain are supraspinally and peripherally mediated. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R307-R314.	1.8	69
35	Differential Processing of Noxious Colonic Input by Thoracolumbar and Lumbosacral Dorsal Horn Neurons in the Rat. Journal of Neurophysiology, 2005, 94, 3788-3794.	1.8	47
36	Modulatory effects of estrogen and progesterone on colorectal hyperalgesia in the rat. Pain, 2005, 117, 433-442.	4.2	63

#	Article	IF	CITATIONS
37	Cutaneous and Colonic Rat DRG Neurons Differ With Respect to Both Baseline and PGE2-Induced Changes in Passive and Active Electrophysiological Properties. Journal of Neurophysiology, 2004, 91, 2524-2531.	1.8	62
38	The Neuroanatomic and Neurophysiologic Basis of Pain. , 2004, , 17-28.		0
39	Neonatal hind paw injury alters processing of visceral and somatic nociceptive stimuli in the adult rat. Journal of Pain, 2004, 5, 440-449.	1.4	46
40	Characterization of basal and re-inflammation-associated long-term alteration in pain responsivity following short-lasting neonatal local inflamatory insult. Pain, 2004, 110, 588-596.	4.2	189
41	Colonic inflammation decreases thermal sensitivity of the forepaw and hindpaw in the rat. Neuroscience Letters, 2004, 359, 81-84.	2.1	14
42	Sensitization in visceral pain and hyperalgesia. Seminars in Pain Medicine, 2003, 1, 150-158.	0.4	3
43	Estrogen Modulates the Visceromotor Reflex and Responses of Spinal Dorsal Horn Neurons to Colorectal Stimulation in the Rat. Journal of Neuroscience, 2003, 23, 3908-3915.	3.6	101
44	Colonic inflammation induces fos expression in the thoracolumbar spinal cord increasing activity in the spinoparabrachial pathway. Pain, 2002, 95, 93-102.	4.2	73
45	Biological basis of visceral pain: recent developments. Pain, 2002, 96, 221-225.	4.2	99
46	Differential effects of spinal CNQX on two populations of dorsal horn neurons responding to colorectal distension in the rat. Pain, 2002, 99, 217-222.	4.2	17
47	NMDA receptor antagonists attenuate noxious and nonnoxious colorectal distention-induced Fos expression in the spinal cord and the visceromotor reflex. Neuroscience, 2002, 113, 205-211.	2.3	38
48	Prostaglandin E ₂ Modulates TTX-R <i>I</i> _{Na} in Rat Colonic Sensory Neurons. Journal of Neurophysiology, 2002, 88, 1512-1522.	1.8	113
49	Spinal NMDA Receptors Contribute to Neuronal Processing of Acute Noxious and Nonnoxious Colorectal Stimulation in the Rat. Journal of Neurophysiology, 2001, 86, 1783-1791.	1.8	45
50	Evidence for thoracolumbar spinal cord processing of inflammatory, but not acute colonic pain. NeuroReport, 2000, 11, 2113-2116.	1.2	73
51	The NMDA receptor antagonist MK-801 attenuates c-Fos expression in the lumbosacral spinal cord following repetitive noxious and non-noxious colorectal distention. Pain, 1999, 83, 321-329.	4.2	49
52	The peptide content of colonic afferents decreases following colonic inflammation. Peptides, 1999, 20, 267-273.	2.4	71
53	Spinal modulation of the induction of central sensitization. Brain Research, 1997, 778, 34-42.	2.2	62
54	Noxious colorectal distention induced-c-Fos protein in limbic brain structures in the rat. Neuroscience Letters, 1996, 215, 165-168.	2.1	115

#	Article	IF	CITATIONS
55	The spinal contribution of substance P to the generation and maintenance of inflammatory hyperalgesia in the rat. Pain, 1996, 67, 151-161.	4.2	112
56	Differential c-Fos expression in the nucleus of the solitary tract and spinal cord following noxious gastric distention in the rat. Neuroscience, 1996, 74, 873-884.	2.3	148
57	Anti-somatostatin antisera, but neither a somatostatin agonist (octreotide) nor antagonist (CYCAM), attenuates hyperalgesia in the rat. Peptides, 1996, 17, 769-773.	2.4	16
58	Noxious colorectal distention induced-c-Fos protein in limbic brain structures in the rat. Neuroscience Letters, 1996, 215, 165-168.	2.1	5
59	Attenuation of c-Fos expression in the rat lumbosacral spinal cord by morphine or tramadol following noxious colorectal distention. Brain Research, 1995, 701, 175-182.	2.2	40
60	Spinal cord NADPH-diaphorase histochemical staining but not nitric oxide synthase immunoreactivity increases following carrageenan-produced hindpaw inflammation in the rat. Brain Research, 1994, 668, 204-210.	2.2	57
61	NADPH-diaphorase histochemistry provides evidence for a bilateral, somatotopically inappropriate response to unilateral hindpaw inflammation in the rat. Brain Research, 1994, 647, 113-123.	2.2	44
62	Noxious distention of viscera results in differential c-Fos expression in second order sensory neurons receiving â€~sympathetic' or â€~parasympathetic' input. Neuroscience Letters, 1994, 180, 71-75.	2.1	80
63	The role of nitric oxide in the development and maintenance of the hyperalgesia produced by intraplantar injection of carrageenan in the rat. Neuroscience, 1994, 60, 367-374.	2.3	225
64	Immunohistochemical and Quantitative Demonstrations of Pain Induced by Lumbar Nerve Root Irritation of the Rat. Spine, 1994, 19, 1780-1794.	2.0	116
65	Differential expression of c-fos and c-jun in two regions of the rat spinal cord following noxious colorectal distention. Neuroscience Letters, 1993, 160, 121-125.	2.1	71
66	Fos-like proteins in the lumbosacral spinal cord following noxious and non-noxious colorectal distention in the rat. Pain, 1992, 49, 393-403.	4.2	125
67	Unilateral hindpaw inflammation produces a bilateral increase in NADPH-diaphorase histochemical staining in the rat lumbar spinal cord. Neuroscience, 1992, 51, 495-499.	2.3	107
68	Effects of spinal kappa-opioid receptor agonists on the responsiveness of nociceptive superficial dorsal horn neurons. Pain, 1991, 44, 187-193.	4.2	104
69	Dynorphin expression and Fos-like immunoreactivity following inflammation induced hyperalgesia are colocalized in spinal cord neurons. Molecular Brain Research, 1991, 10, 227-233.	2.3	223
70	Physical Characterization of a 137Cs Field Used for Proficiency-test Irradiations. Health Physics, 1991, 60, 789-796.	0.5	2
71	Analysis of calcitonin gene-related peptide-like immunoreactivity in the cat dorsal spinal cord and dorsal root ganglia provide evidence for a multisegmental projection of nociceptive C-fiber primary afferents. Journal of Comparative Neurology, 1990, 302, 562-574.	1.6	67
72	Ultrastructural demonstration of synaptic connections between calcitonin gene-related peptide immunoreactive axons and dynorphin A(1–8) immunoreactive dorsal horn neurons in a rat model of peripheral inflammation and hyperalgesia. Peptides, 1990, 11, 1233-1237.	2.4	21

#	Article	IF	CITATIONS
73	Calcitonin gene-related peptide immunoreactivity in the cat lumbosacral spinal cord and the effects of multiple dorsal rhizotomies. Journal of Comparative Neurology, 1989, 287, 225-237.	1.6	91
74	Effect of multiple dorsal rhizotomies on calcitonin gene-related peptide-like immunoreactivity in the lumbosacral dorsal spinal cord of the cat: A radioimmunoassay analysis. Peptides, 1989, 10, 979-983.	2.4	41
75	Expansion of receptive fields of spinal lamina I projection neurons in rats with unilateral adjuvant-induced inflammation: the contribution of dorsal horn mechanisms. Pain, 1989, 37, 229-243.	4.2	376
76	Demonstration of calcitonin gene-related peptide immunoreactive axons contacting dynorphin A(1–8) immunoreactive spinal neurons in a rat model of peripheral inflammation and hyperalgesia. Brain Research, 1988, 475, 168-172.	2.2	50
77	The spinal projection of individual identified A-delta- and C-fibers. Journal of Neurophysiology, 1988, 59, 41-55.	1.8	101
78	The rostral projection of small diameter primary afferents in Lissauer's tract. Brain Research, 1986, 399, 185-189.	2.2	27