Célia Fortuna Rodrigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1740831/publications.pdf

Version: 2024-02-01

279798 223800 2,339 63 23 46 g-index citations h-index papers 3471 63 63 63 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Application of probiotics in candidiasis management. Critical Reviews in Food Science and Nutrition, 2022, 62, 8249-8264.	10.3	17
2	Biofilm formation in clinically relevant filamentous fungi: a therapeutic challenge. Critical Reviews in Microbiology, 2022, 48, 197-221.	6.1	11
3	Enhancing of Wound Healing in Burn Patients through Candida albicans β-Glucan. Journal of Fungi (Basel, Switzerland), 2022, 8, 263.	3.5	4
4	Prevalence and Antifungal Susceptibility Profile of Oral Candida spp. Isolates from a Hospital in Slovakia. Medicina (Lithuania), 2022, 58, 576.	2.0	4
5	Marine Compounds with Anti-Candida sp. Activity: A Promised "Land―for New Antifungals. Journal of Fungi (Basel, Switzerland), 2022, 8, 669.	3.5	6
6	Human microbiome and homeostasis: insights into the key role of prebiotics, probiotics, and symbiotics. Critical Reviews in Food Science and Nutrition, 2021, 61, 1415-1428.	10.3	20
7	Tailoring the immobilization and release of chlorhexidine using dopamine chemistry to fight infections associated to orthopedic devices. Materials Science and Engineering C, 2021, 120, 111742.	7.3	8
8	Integration of FISH and Microfluidics. Methods in Molecular Biology, 2021, 2246, 249-261.	0.9	0
9	Development and antioxidant characterization of Ginger-Mint drink prepared through different extraction techniques. Journal of Food Measurement and Characterization, 2021, 15, 2576-2590.	3.2	11
10	Biofilms in Wounds: New Advances in Therapy and in Healing Management. Biomedicines, 2021, 9, 193.	3.2	1
11	Curcumin nanoformulations for antimicrobial and wound healing purposes. Phytotherapy Research, 2021, 35, 2487-2499.	5.8	23
12	Candida auris: A Quick Review on Identification, Current Treatments, and Challenges. International Journal of Molecular Sciences, 2021, 22, 4470.	4.1	38
13	Naturally Occurring Bioactives as Antivirals: Emphasis on Coronavirus Infection. Frontiers in Pharmacology, 2021, 12, 575877.	3.5	18
14	Fungal Biofilms 2020. Journal of Fungi (Basel, Switzerland), 2021, 7, 603.	3.5	1
15	Current trends on resveratrol bioactivities to treat periodontitis. Food Bioscience, 2021, 42, 101205.	4.4	4
16	Overview on the Prevalence of Fungal Infections, Immune Response, and Microbiome Role in COVID-19 Patients. Journal of Fungi (Basel, Switzerland), 2021, 7, 720.	3.5	49
17	Resveratrol-Based Nanoformulations as an Emerging Therapeutic Strategy for Cancer. Frontiers in Molecular Biosciences, 2021, 8, 649395.	3.5	34
18	Chronic pelvic pain syndrome: Highlighting medicinal plants toward biomolecules discovery for upcoming drugs formulation. Phytotherapy Research, 2020, 34, 769-787.	5.8	6

#	Article	lF	Citations
19	Candida spp./Bacteria Mixed Biofilms. Journal of Fungi (Basel, Switzerland), 2020, 6, 5.	3.5	78
20	Clonal transmission of multidrug-resistant Acinetobacter baumannii harbouring blaOXA-24-like and blaOXA-23-like genes in a tertiary hospital in Albania. Journal of Global Antimicrobial Resistance, 2020, 23, 79-81.	2.2	2
21	Probiotics: Versatile Bioactive Components in Promoting Human Health. Medicina (Lithuania), 2020, 56, 433.	2.0	85
22	Microbial interactions and immunity response in oral <i>Candida</i> species. Future Microbiology, 2020, 15, 1653-1677.	2.0	12
23	Biomaterial-Related Infections. Journal of Clinical Medicine, 2020, 9, 722.	2.4	18
24	Management of Streptococcus mutans-Candida spp. Oral Biofilms' Infections: Paving the Way for Effective Clinical Interventions. Journal of Clinical Medicine, 2020, 9, 517.	2.4	24
25	Transcriptional responses of Candida glabrata biofilm cells to fluconazole are modulated by the carbon source. Npj Biofilms and Microbiomes, 2020, 6, 4.	6.4	16
26	Whole-Genome Sequences of Two NDM-1-Producing Pseudomonas aeruginosa Strains Isolated in a Clinical Setting in Albania in 2018. Microbiology Resource Announcements, 2020, 9, .	0.6	4
27	Farnesol and Tyrosol: Secondary Metabolites with a Crucial quorum-sensing Role in Candida Biofilm Development. Genes, 2020, 11, 444.	2.4	59
28	Diet, Lifestyle and Cardiovascular Diseases: Linking Pathophysiology to Cardioprotective Effects of Natural Bioactive Compounds. International Journal of Environmental Research and Public Health, 2020, 17, 2326.	2.6	146
29	Nanoencapsulation of Anthocyanins for Drug Delivery Systems. Nanotechnology in the Life Sciences, 2020, , 145-163.	0.6	1
30	Insights on the anticancer potential of plant-food bioactives: A key focus to prostate cancer. Cellular and Molecular Biology, 2020, 66, 250.	0.9	2
31	Plant-food-derived bioactives: Key health benefits and current nanosystems as a strategy to enhance their bioavailability. Cellular and Molecular Biology, 2020, 66, 232.	0.9	1
32	Plant-food-derived bioactives: Key health benefits and current nanosystems as a strategy to enhance their bioavailability. Cellular and Molecular Biology, 2020, 66, 232-242.	0.9	0
33	Insights on the anticancer potential of plant-food bioactives: A key focus to prostate cancer. Cellular and Molecular Biology, 2020, 66, 250-263.	0.9	O
34	Silymarin antiproliferative and apoptotic effects: Insights into its clinical impact in various types of cancer. Phytotherapy Research, 2019, 33, 2849-2861.	5.8	42
35	<i>Stevia rebaudiana</i> Bertoni bioactive effects: From in vivo to clinical trials towards future therapeutic approaches. Phytotherapy Research, 2019, 33, 2904-2917.	5.8	22
36	Novel Therapies for Biofilm-Based Candida spp. Infections. Advances in Experimental Medicine and Biology, 2019, 1214, 93-123.	1.6	25

#	Article	IF	Citations
37	Design of an Antifungal Surface Embedding Liposomal Amphotericin B Through a Mussel Adhesive-Inspired Coating Strategy. Frontiers in Chemistry, 2019, 7, 431.	3.6	25
38	Phytochemicals in Prostate Cancer: From Bioactive Molecules to Upcoming Therapeutic Agents. Nutrients, 2019, 11, 1483.	4.1	59
39	Alternatives Approaches to Treat Biofilm's Infections. Current Medicinal Chemistry, 2019, 26, 2514-2514.	2.4	0
40	Inflammatory Cell Recruitment in Candida glabrata Biofilm Cell-Infected Mice Receiving Antifungal Chemotherapy. Journal of Clinical Medicine, 2019, 8, 142.	2.4	10
41	Advances in Chemical and Biological Methods to Identify Microorganismsâ€"From Past to Present. Microorganisms, 2019, 7, 130.	3.6	246
42	Cucurbits Plants: A Key Emphasis to Its Pharmacological Potential. Molecules, 2019, 24, 1854.	3.8	106
43	Measurement of Off-Flavoring Volatile Compounds and Microbial Load as a Probable Marker for Keeping Quality of Pasteurized Milk. Applied Sciences (Switzerland), 2019, 9, 959.	2.5	8
44	Plant-Derived Bioactives in Oral Mucosal Lesions: A Key Emphasis to Curcumin, Lycopene, Chamomile, Aloe vera, Green Tea and Coffee Properties. Biomolecules, 2019, 9, 106.	4.0	87
45	Candida sp. Infections in Patients with Diabetes Mellitus. Journal of Clinical Medicine, 2019, 8, 76.	2.4	166
46	Promising Alternative Therapeutics for Oral Candidiasis. Current Medicinal Chemistry, 2019, 26, 2515-2528.	2.4	29
47	Combination of Posaconazole and Amphotericin B in the Treatment of Candida glabrata Biofilms. Microorganisms, 2018, 6, 123.	3.6	13
48	The MNN2 Gene Knockout Modulates the Antifungal Resistance of Biofilms of Candida glabrata. Biomolecules, 2018, 8, 130.	4.0	13
49	Susceptibility of <i>Candida glabrata </i> biofilms to echinocandins: alterations in the matrix composition. Biofouling, 2018, 34, 569-578.	2.2	23
50	Portrait of Matrix Gene Expression in Candida glabrata Biofilms with Stress Induced by Different Drugs. Genes, 2018, 9, 205.	2.4	21
51	Oral mucositis caused by <i>Candida glabrata</i> biofilms: failure of the concomitant use of fluconazole and ascorbic acid. Therapeutic Advances in Infectious Disease, 2017, 4, 10-17.	1.8	22
52	The Effectiveness of Voriconazole in Therapy of Candida glabrata's Biofilms Oral Infections and Its Influence on the Matrix Composition and Gene Expression. Mycopathologia, 2017, 182, 653-664.	3.1	24
53	The carboxylic acid transporters Jen1 and Jen2 affect the architecture and fluconazole susceptibility of <i>Candida albicans</i> biofilm in the presence of lactate. Biofouling, 2017, 33, 943-954.	2.2	12
54	Candida Species Biofilms' Antifungal Resistance. Journal of Fungi (Basel, Switzerland), 2017, 3, 8.	3.5	184

#	Article	IF	Citations
55	Liposomal and Deoxycholate Amphotericin B Formulations: Effectiveness against Biofilm Infections of Candida spp Pathogens, 2017, 6, 62.	2.8	33
56	Synergistic Antimicrobial Interaction between Honey and Phage against Escherichia coli Biofilms. Frontiers in Microbiology, 2017, 8, 2407.	3.5	64
57	Candida glabrata Biofilms: How Far Have We Come?. Journal of Fungi (Basel, Switzerland), 2017, 3, 11.	3.5	80
58	<i>Candida glabrata's</i> recurrent infections: biofilm formation during Amphotericin B treatment. Letters in Applied Microbiology, 2016, 63, 77-81.	2.2	17
59	Detection and Quantification of Fluconazole Within Candida glabrata Biofilms. Mycopathologia, 2015, 179, 391-395.	3.1	9
60	Effects of fluconazole on <i>Candida glabrata</i> biofilms and its relationship with ABC transporter gene expression. Biofouling, 2014, 30, 447-457.	2.2	49
61	Candida glabrata: a review of its features and resistance. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 673-688.	2.9	216
62	Drug-Delivery Systems of Green Tea Catechins for Improved Stability and Bioavailability. Current Medicinal Chemistry, 2013, 20, 4744-4757.	2.4	31
63	Milk Proteins., 0,, 4756-4766.		O