
Marcin Nowotny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1740277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Pet127 protein is a mitochondrial 5′-to-3′ exoribonuclease from the PD-(D/E)XK superfamily involved in RNA maturation and intron degradation in yeasts. Rna, 2022, 28, 711-728.	3.5	3
2	Natural Compounds Inhibit SARS-CoV-2 nsp13 Unwinding and ATPase Enzyme Activities. ACS Pharmacology and Translational Science, 2022, 5, 226-239.	4.9	43
3	Structural basis of transposon end recognition explains central features of Tn7 transposition systems. Molecular Cell, 2022, 82, 2618-2632.e7.	9.7	18
4	A heterotypic assembly mechanism regulates <scp>CHIP E3</scp> ligase activity. EMBO Journal, 2022, 41,	7.8	9
5	Structural Insights into the Interaction of Clinically Relevant Phosphorothioate mRNA Cap Analogs with Translation Initiation Factor 4E Reveal Stabilization via Electrostatic Thio-Effect. ACS Chemical Biology, 2021, 16, 334-343.	3.4	16
6	Structures of Substrate Complexes of Foamy Viral Protease-Reverse Transcriptase. Journal of Virology, 2021, 95, e0084821.	3.4	2
7	A combined structural and biochemical approach reveals translocation and stalling of UvrB on the DNA lesion as a mechanism of damage verification in bacterial nucleotide excision repair. DNA Repair, 2020, 85, 102746.	2.8	13
8	Structure and mechanism of CutA, RNA nucleotidyl transferase with an unusual preference for cytosine. Nucleic Acids Research, 2020, 48, 9387-9405.	14.5	2
9	Disulfide bridge cross-linking between protein and the RNA backbone as a tool to study RNase H1. Bioorganic and Medicinal Chemistry, 2020, 28, 115741.	3.0	4
10	Discovery of OATD-01 , a First-in-Class Chitinase Inhibitor as Potential New Therapeutics for Idiopathic Pulmonary Fibrosis. Journal of Medicinal Chemistry, 2020, 63, 15527-15540.	6.4	18
11	The expression of Rpb10, a small subunit common to RNA polymerases, is modulated by the R3H domain-containing Rbs1 protein and the Upf1 helicase. Nucleic Acids Research, 2020, 48, 12252-12268.	14.5	15
12	Origins of the Increased Affinity of Phosphorothioate-Modified Therapeutic Nucleic Acids for Proteins. Journal of the American Chemical Society, 2020, 142, 7456-7468.	13.7	56
13	RNases H: Structure and mechanism. DNA Repair, 2019, 84, 102672.	2.8	96
14	Crosslink and shield: protecting abasic sites from error-prone repair. Nature Structural and Molecular Biology, 2019, 26, 530-532.	8.2	0
15	Recognition and processing of branched DNA substrates by Slx1–Slx4 nuclease. Nucleic Acids Research, 2019, 47, 11681-11690.	14.5	10
16	RuvC uses dynamic probing of the Holliday junction to achieve sequence specificity and efficient resolution. Nature Communications, 2019, 10, 4102.	12.8	23
17	Structural analysis of mtEXO mitochondrial RNA degradosome reveals tight coupling of nuclease and helicase components. Nature Communications, 2018, 9, 97.	12.8	23
18	Mechanism of polypurine tract primer generation by HIV-1 reverse transcriptase. Journal of Biological Chemistry, 2018, 293, 191-202.	3.4	21

MARCIN NOWOTNY

#	Article	IF	CITATIONS
19	Coordination between the polymerase and RNase H activity of HIV-1 reverse transcriptase. Nucleic Acids Research, 2017, 45, gkx004.	14.5	28
20	Structural Studies of RNases H2 as an Example of Crystal Structure Determination of Protein–Nucleic Acid Complexes. Methods in Enzymology, 2017, 592, 123-143.	1.0	0
21	Single-molecule imaging of UvrA and UvrB recruitment to DNA lesions in living Escherichia coli. Nature Communications, 2016, 7, 12568.	12.8	88
22	Structure and mechanism of nucleases regulated by SLX4. Current Opinion in Structural Biology, 2016, 36, 97-105.	5.7	11
23	Structural and Mechanistic Analysis of the Slx1-Slx4 Endonuclease. Cell Reports, 2015, 10, 1467-1476.	6.4	28
24	Crystal structure of RNase H3–substrate complex reveals parallel evolution of RNA/DNA hybrid recognition. Nucleic Acids Research, 2014, 42, 9285-9294.	14.5	18
25	The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification. Nucleic Acids Research, 2014, 42, 4160-4179.	14.5	135
26	Crystal structure of the catalytic core of Rad2: insights into the mechanism of substrate binding. Nucleic Acids Research, 2014, 42, 10762-10775.	14.5	24
27	Ty3 reverse transcriptase complexed with an RNA-DNA hybrid shows structural and functional asymmetry. Nature Structural and Molecular Biology, 2014, 21, 389-396.	8.2	31
28	Reverse Transcriptases. Nucleic Acids and Molecular Biology, 2014, , 189-214.	0.2	7
29	Novel insights from structural analysis of lentiviral and gammaretroviral reverse transcriptases in complex with RNA/DNA hybrids. Retrovirology, 2013, 10, .	2.0	0
30	Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid. Nucleic Acids Research, 2013, 41, 3874-3887.	14.5	42
31	Crystal structure of RuvC resolvase in complex with Holliday junction substrate. Nucleic Acids Research, 2013, 41, 9945-9955.	14.5	61
32	RNase H2 roles in genome integrity revealed by unlinking its activities. Nucleic Acids Research, 2013, 41, 3130-3143.	14.5	124
33	The RNase H Domain: Structure, Function and Mechanism. , 2013, , 53-75.		0
34	Catalytic Mechanism of RNA Backbone Cleavage by Ribonuclease H from Quantum Mechanics/Molecular Mechanics Simulations. Journal of the American Chemical Society, 2011, 133, 8934-8941.	13.7	164
35	Structure of UvrA nucleotide excision repair protein in complex with modified DNA. Nature Structural and Molecular Biology, 2011, 18, 191-197.	8.2	75
36	The Structural and Biochemical Characterization of Human RNase H2 Complex Reveals the Molecular Basis for Substrate Recognition and Aicardi-Goutières Syndrome Defects. Journal of Biological Chemistry, 2011, 286, 10540-10550.	3.4	56

MARCIN NOWOTNY

#	Article	IF	CITATIONS
37	Crystal Structures of RNase H2 in Complex with Nucleic Acid Reveal the Mechanism of RNA-DNA Junction Recognition and Cleavage. Molecular Cell, 2010, 40, 658-670.	9.7	90
38	Structural and functional modules in RNA interference. Current Opinion in Structural Biology, 2009, 19, 286-293.	5.7	50
39	Retroviral integrase superfamily: the structural perspective. EMBO Reports, 2009, 10, 144-151.	4.5	173
40	Specific recognition of RNA/DNA hybrid and enhancement of human RNase H1 activity by HBD. EMBO Journal, 2008, 27, 1172-1181.	7.8	91
41	Structure of Human RNase H1 Complexed with an RNA/DNA Hybrid: Insight into HIV Reverse Transcription. Molecular Cell, 2007, 28, 264-276.	9.7	282
42	Structure of Human RNase H1 Complexed with an RNA/DNA Hybrid: Insight into HIV Reverse Transcription. Molecular Cell, 2007, 28, 513.	9.7	12
43	Making and Breaking Nucleic Acids: Two-Mg2+-Ion Catalysis and Substrate Specificity. Molecular Cell, 2006, 22, 5-13.	9.7	495
44	Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release. EMBO Journal, 2006, 25, 1924-1933.	7.8	225
45	Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis. Cell, 2005, 121, 1005-1016.	28.9	552