Changtai Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1739707/publications.pdf

Version: 2024-02-01

200 papers

19,748 citations

76 h-index 134 g-index

202 all docs 202 docs citations

times ranked

202

19161 citing authors

#	Article	IF	CITATIONS
1	Ultralight and Highly Compressible Graphene Aerogels. Advanced Materials, 2013, 25, 2219-2223.	21.0	1,249
2	Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nature Communications, 2014, 5, 5002.	12.8	892
3	Metal–Organicâ€Frameworkâ€Derived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution. Advanced Materials, 2017, 29, 1700874.	21.0	678
4	Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy and Environmental Science, 2016, 9, 1299-1307.	30.8	623
5	Sustainable Synthesis and Assembly of Biomassâ€Derived B/N Coâ€Doped Carbon Nanosheets with Ultrahigh Aspect Ratio for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2016, 26, 111-119.	14.9	607
6	Design and fabrication of carbon dots for energy conversion and storage. Chemical Society Reviews, 2019, 48, 2315-2337.	38.1	552
7	Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group?. Energy and Environmental Science, 2020, 13, 1318-1325.	30.8	342
8	A Layeredâ€Nanospaceâ€Confinement Strategy for the Synthesis of Twoâ€Dimensional Porous Carbon Nanosheets for Highâ€Rate Performance Supercapacitors. Advanced Energy Materials, 2015, 5, 1401761.	19.5	308
9	Ultrafine MoO ₂ â€Carbon Microstructures Enable Ultralongâ€Life Powerâ€Type Sodium Ion Storage by Enhanced Pseudocapacitance. Advanced Energy Materials, 2017, 7, 1602880.	19.5	306
10	Superhierarchical Cobaltâ€Embedded Nitrogenâ€Doped Porous Carbon Nanosheets as Twoâ€inâ€One Hosts for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, e1706895.	21.0	300
11	A superhydrophilic "nanoglue―for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors. Energy and Environmental Science, 2017, 10, 1958-1965.	30.8	294
12	A Flexible TiO ₂ (B)â€Based Battery Electrode with Superior Power Rate and Ultralong Cycle Life. Advanced Materials, 2013, 25, 3462-3467.	21.0	286
13	Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: challenges and perspectives. Energy and Environmental Science, 2021, 14, 1176-1193.	30.8	275
14	Enhanced sodium storage capability enabled by super wide-interlayer-spacing MoS2 integrated on carbon fibers. Nano Energy, 2017, 41, 66-74.	16.0	273
15	Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting. Nano Energy, 2017, 34, 472-480.	16.0	258
16	3D Architecture Materials Made of NiCoAl‣DH Nanoplates Coupled with NiCo arbonate Hydroxide Nanowires Grown on Flexible Graphite Paper for Asymmetric Supercapacitors. Advanced Energy Materials, 2014, 4, 1400761.	19.5	251
17	The role of microwave absorption on formation of graphene from graphite oxide. Carbon, 2012, 50, 3267-3273.	10.3	250
18	Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: Challenges and perspectives. Nano Energy, 2019, 57, 459-472.	16.0	232

#	Article	IF	Citations
19	3D Porous Nâ€Doped Graphene Frameworks Made of Interconnected Nanocages for Ultrahighâ€Rate and Longâ€Life Li–O ₂ Batteries. Advanced Functional Materials, 2015, 25, 6913-6920.	14.9	231
20	Ultrafast Selfâ€Assembly of Graphene Oxideâ€Induced Monolithic NiCo–Carbonate Hydroxide Nanowire Architectures with a Superior Volumetric Capacitance for Supercapacitors. Advanced Functional Materials, 2015, 25, 2109-2116.	14.9	230
21	Ultrasensitive Ironâ€Triggered Nanosized Fe–CoOOH Integrated with Graphene for Highly Efficient Oxygen Evolution. Advanced Energy Materials, 2017, 7, 1602148.	19.5	216
22	Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 15954-15960.	10.3	216
23	Surfaceâ€Confined Fabrication of Ultrathin Nickel Cobaltâ€Layered Double Hydroxide Nanosheets for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2018, 28, 1803272.	14.9	215
24	Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances. Journal of Materials Chemistry A, 2013, 1, 1963-1968.	10.3	193
25	Recent advances in innovative strategies for the CO ₂ electroreduction reaction. Energy and Environmental Science, 2021, 14, 765-780.	30.8	188
26	Chemically Tailoring Coal to Fluorescent Carbon Dots with Tuned Size and Their Capacity for Cu(II) Detection. Small, 2014, 10, 4926-4933.	10.0	186
27	Nanohybrids from NiCoAl-LDH coupled with carbon for pseudocapacitors: understanding the role of nano-structured carbon. Nanoscale, 2014, 6, 3097-3104.	5.6	176
28	NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation. Carbon, 2016, 110, 1-7.	10.3	175
29	Restructuring of Cu ₂ O to Cu ₂ O@Cu-Metal–Organic Frameworks for Selective Electrochemical Reduction of CO ₂ . ACS Applied Materials & Description of CO ₂ . ACS Applied Materials & Description of CO ₂ . ACS Applied Materials & Description of CO ₂ . ACS Applied Materials & Description of CO ₃ . ACS Applied Materials & Description of CO ₄ . ACS Applied Materials & Description of CO ₅ . ACS Applied Materials & Description of CO ₆ . ACS Applied Materials & Description of CO ₇ . ACS Applied Materials & Description of CO <sub &="" applied="" co₇ . ACS Applied Materials & Description of CO <sub &="" applied="" co<sub="" description="" mat<="" materials="" of="" td=""><td>8.0</td><td>174</td></sub>	8.0	174
30	Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors. Carbon, 2014, 70, 130-141.	10.3	171
31	Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting. Energy and Environmental Science, 2020, 13, 545-553.	30.8	169
32	Toward commercial-level mass-loading electrodes for supercapacitors: opportunities, challenges and perspectives. Energy and Environmental Science, 2021, 14, 576-601.	30.8	166
33	Mass and Charge Transfer Coenhanced Oxygen Evolution Behaviors in CoFe‣ayered Double Hydroxide Assembled on Graphene. Advanced Materials Interfaces, 2016, 3, 1500782.	3.7	165
34	Nitrogen-doped carbon dots decorated on graphene: a novel all-carbon hybrid electrocatalyst for enhanced oxygen reduction reaction. Chemical Communications, 2015, 51, 3419-3422.	4.1	157
35	Scrutinizing Defects and Defect Density of Seleniumâ€Doped Graphene for Highâ€Efficiency Triiodide Reduction in Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2018, 57, 4682-4686.	13.8	155
36	Ultrahigh Rate and Longâ€Life Sodiumâ€Ion Batteries Enabled by Engineered Surface and Nearâ€Surface Reactions. Advanced Materials, 2018, 30, 1702486.	21.0	153

3

#	Article	IF	Citations
37	Boric acid-mediated B,N-codoped chitosan-derived porous carbons with a high surface area and greatly improved supercapacitor performance. Nanoscale, 2015, 7, 5120-5125.	5.6	151
38	Porous carbon nanosheets from coal tar for high-performance supercapacitors. Journal of Power Sources, 2017, 357, 41-46.	7.8	150
39	Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium–sulfur battery. Energy Storage Materials, 2016, 5, 223-229.	18.0	149
40	Nitrogenâ€Doped Graphene Nanoribbons with Surface Enriched Active Sites and Enhanced Performance for Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1500180.	19.5	147
41	High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes. Nano Energy, 2019, 61, 567-575.	16.0	126
42	Solvothermal conversion of coal into nitrogen-doped carbon dots with singlet oxygen generation and high quantum yield. Chemical Engineering Journal, 2017, 320, 570-575.	12.7	123
43	Rice husk-based hierarchical porous carbon for high performance supercapacitors: The structure-performance relationship. Carbon, 2020, 161, 432-444.	10.3	121
44	Starch Derived Porous Carbon Nanosheets for High-Performance Photovoltaic Capacitive Deionization. Environmental Science & Env	10.0	120
45	Natural SEI-Inspired Dual-Protective Layers via Atomic/Molecular Layer Deposition for Long-Life Metallic Lithium Anode. Matter, 2019, 1, 1215-1231.	10.0	120
46	Bridging of Ultrathin NiCo ₂ O ₄ Nanosheets and Graphene with Polyaniline: A Theoretical and Experimental Study. Chemistry of Materials, 2016, 28, 5855-5863.	6.7	116
47	Membrane-Free Hybrid Capacitive Deionization System Based on Redox Reaction for High-Efficiency NaCl Removal. Environmental Science & Environmental Sc	10.0	116
48	Single crystal cathodes enabling high-performance all-solid-state lithium-ion batteries. Energy Storage Materials, 2020, 30, 98-103.	18.0	109
49	Recent research advances of self-discharge in supercapacitors: Mechanisms and suppressing strategies. Journal of Energy Chemistry, 2021, 58, 94-109.	12.9	109
50	Hydrothermal Synthesis of Phosphate-Functionalized Carbon Nanotube-Containing Carbon Composites for Supercapacitors with Highly Stable Performance. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2104-2110.	8.0	107
51	Boron-doped graphene as a high-efficiency counter electrode for dye-sensitized solar cells. Chemical Communications, 2014, 50, 3328.	4.1	107
52	Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors. Chemical Engineering Journal, 2018, 350, 49-56.	12.7	107
53	Sulfur-infiltrated graphene-backboned mesoporous carbon nanosheets with a conductive polymer coating for long-life lithium–sulfur batteries. Nanoscale, 2015, 7, 7569-7573.	5.6	106
54	Hierarchical porous carbon sheets derived from biomass containing an activation agent and in-built template for lithium ion batteries. Carbon, 2018, 139, 1085-1092.	10.3	106

#	Article	IF	CITATIONS
55	Nitrogen-doped hierarchically porous carbon nanosheets derived from polymer/graphene oxide hydrogels for high-performance supercapacitors. Journal of Colloid and Interface Science, 2020, 560, 69-76.	9.4	106
56	Flexible Paper-like Free-Standing Electrodes by Anchoring Ultrafine SnS ₂ Nanocrystals on Graphene Nanoribbons for High-Performance Sodium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15484-15491.	8.0	102
57	Ultrafast Fabrication of Covalently Crossâ€linked Multifunctional Graphene Oxide Monoliths. Advanced Functional Materials, 2014, 24, 4915-4921.	14.9	101
58	Design and Fabrication of Hierarchical NiCoP–MOF Heterostructure with Enhanced Pseudocapacitive Properties. Small, 2021, 17, e2100353.	10.0	101
59	Graphene-mediated highly-dispersed MoS2 nanosheets with enhanced triiodide reduction activity for dye-sensitized solar cells. Carbon, 2016, 100, 474-483.	10.3	100
60	Preparation of carbon nanosheets from petroleum asphalt via recyclable molten-salt method for superior lithium and sodium storage. Carbon, 2017, 122, 344-351.	10.3	99
61	Coal-based carbon anodes for high-performance potassium-ion batteries. Carbon, 2019, 147, 574-581.	10.3	98
62	3D nickel-cobalt phosphide heterostructure for high-performance solid-state hybrid supercapacitors. Journal of Power Sources, 2020, 467, 228324.	7.8	97
63	Highly Stable Lithium Metal Anode Interface via Molecular Layer Deposition Zircone Coatings for Long Life Nextâ€Generation Battery Systems. Angewandte Chemie - International Edition, 2019, 58, 15797-15802.	13.8	96
64	Decoupling and correlating the ion transport by engineering 2D carbon nanosheets for enhanced charge storage. Nano Energy, 2019, 64, 103921.	16.0	90
65	Micro-sized porous carbon spheres with ultra-high rate capability for lithium storage. Nanoscale, 2015, 7, 1791-1795.	5.6	88
66	Operando Revealing Dynamic Reconstruction of NiCo Carbonate Hydroxide for High-Rate Energy Storage. Joule, 2020, 4, 673-687.	24.0	88
67	Understanding of Sodium Storage Mechanism in Hard Carbons: Ongoing Development under Debate. Advanced Energy Materials, 2022, 12, .	19.5	88
68	Chemically grafting graphene oxide to B,N co-doped graphene via ionic liquid and their superior performance for triiodide reduction. Nano Energy, 2016, 25, 184-192.	16.0	87
69	Synthesis of ultrathin hollow carbon shell from petroleum asphalt for high-performance anode material in lithium-ion batteries. Chemical Engineering Journal, 2016, 286, 632-639.	12.7	86
70	Highâ€Stackingâ€Density, Superiorâ€Roughness LDH Bridged with Vertically Aligned Graphene for Highâ€Performance Asymmetric Supercapacitors. Small, 2017, 13, 1701288.	10.0	83
71	Strongly Coupled Architectures of Cobalt Phosphide Nanoparticles Assembled on Graphene as Bifunctional Electrocatalysts for Water Splitting. ChemElectroChem, 2016, 3, 719-725.	3.4	82
72	Activation of transition metal oxides by in-situ electro-regulated structure-reconstruction for ultra-efficient oxygen evolution. Nano Energy, 2019, 58, 778-785.	16.0	81

#	Article	IF	CITATIONS
73	A Universal Converse Voltage Process for Triggering Transition Metal Hybrids In Situ Phase Restruction toward Ultrahighâ€Rate Supercapacitors. Advanced Materials, 2019, 31, e1901241.	21.0	81
74	Nanopore-confined g-C ₃ N ₄ nanodots inÂN, S co-doped hollow porous carbon with boosted capacity for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 7133-7141.	10.3	80
75	A closed-loop and scalable process for the production of biomass-derived superhydrophilic carbon for supercapacitors. Green Chemistry, 2021, 23, 3400-3409.	9.0	80
76	Highly stable lithium–sulfur batteries based on p–n heterojunctions embedded on hollow sheath carbon propelling polysulfides conversion. Journal of Materials Chemistry A, 2019, 7, 9230-9240.	10.3	79
77	Cobalt nitride nanoparticles embedded in porous carbon nanosheet arrays propelling polysulfides conversion for highly stable lithium–sulfur batteries. Energy Storage Materials, 2019, 21, 210-218.	18.0	79
78	Free-standing, hierarchically porous carbon nanotube film as a binder-free electrode for high-energy Li–O2 batteries. Journal of Materials Chemistry A, 2013, 1, 12033.	10.3	78
79	CoMn Layered Double Hydroxides/Carbon Nanotubes Architectures as Highâ€Performance Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem, 2016, 3, 906-912.	3.4	78
80	Nitrogen-doped mesoporous carbon nanosheets derived from metal-organic frameworks in a molten salt medium for efficient desulfurization. Carbon, 2017, 117, 376-382.	10.3	78
81	Nitrogen-rich carbon coupled multifunctional metal oxide/graphene nanohybrids for long-life lithium storage and efficient oxygen reduction. Nano Energy, 2015, 12, 578-587.	16.0	76
82	Organic amine-grafted carbon quantum dots with tailored surface and enhanced photoluminescence properties. Carbon, 2015, 91, 291-297.	10.3	74
83	Laser Irradiation of Electrode Materials for Energy Storage and Conversion. Matter, 2020, 3, 95-126.	10.0	74
84	Rational design and fabrication of sulfur-doped porous graphene with enhanced performance as a counter electrode in dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 2280-2287.	10.3	72
85	Selfâ€Templating Synthesis of 3D Hollow Tubular Porous Carbon Derived from Straw Cellulose Waste with Excellent Performance for Supercapacitors. ChemSusChem, 2019, 12, 1390-1400.	6.8	68
86	Phase controllable synthesis of Ni2+ post-modified CoP nanowire for enhanced oxygen evolution. Nano Energy, 2019, 62, 136-143.	16.0	66
87	Dual integration system endowing two-dimensional titanium disulfide with enhanced triiodide reduction performance in dye-sensitized solar cells. Nano Energy, 2016, 22, 59-69.	16.0	65
88	3D Carbon Frameworks for Ultrafast Charge/Discharge Rate Supercapacitors with High Energy-Power Density. Nano-Micro Letters, 2021, 13, 8.	27.0	64
89	Microscopic-Level Insights into the Mechanism of Enhanced NH ₃ Synthesis in Plasma-Enabled Cascade N ₂ Oxidation–Electroreduction System. Journal of the American Chemical Society, 2022, 144, 10193-10200.	13.7	64
90	Decoupling atomic-layer-deposition ultrafine RuO 2 for high-efficiency and ultralong-life Li-O 2 batteries. Nano Energy, 2017, 34, 399-407.	16.0	63

#	Article	IF	Citations
91	Calcined MgAl-Layered Double Hydroxide/Graphene Hybrids for Capacitive Deionization. Industrial & Engineering Chemistry Research, 2018, 57, 6417-6425.	3.7	59
92	Decoupling the Voltage Hysteresis of Liâ€Rich Cathodes: Electrochemical Monitoring, Modulation Anionic Redox Chemistry and Theoretical Verifying. Advanced Functional Materials, 2021, 31, .	14.9	59
93	Ultrafast construction of interfacial sites by wet chemical etching to enhance electrocatalytic oxygen evolution. Nano Energy, 2020, 69, 104367.	16.0	58
94	Facile Fabrication of NiCoAl-Layered Metal Oxide/Graphene Nanosheets for Efficient Capacitive Deionization Defluorination. ACS Applied Materials & Samp; Interfaces, 2019, 11, 31200-31209.	8.0	57
95	Nitrogen-doped hierarchical porous carbon derived from metal–organic aerogel for high performance lithium–sulfur batteries. Journal of Energy Chemistry, 2017, 26, 1282-1290.	12.9	56
96	Is It Appropriate to Use the Nafion Membrane in Electrocatalytic N ₂ Reduction?. Small Methods, 2019, 3, 1900474.	8.6	56
97	Unveiling the critical role of interfacial ionic conductivity in all-solid-state lithium batteries. Nano Energy, 2020, 72, 104686.	16.0	56
98	Nitrogen and phosphorus dual-doped graphene as a metal-free high-efficiency electrocatalyst for triiodide reduction. Nanoscale, 2016, 8, 17458-17464.	5.6	55
99	Self-healing electrostatic shield enabling uniform lithium deposition in all-solid-state lithium batteries. Energy Storage Materials, 2019, 22, 194-199.	18.0	55
100	Supramolecular polymerization-assisted synthesis of nitrogen and sulfur dual-doped porous graphene networks from petroleum coke as efficient metal-free electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 11331-11339.	10.3	54
101	Engineered Fabrication of Hierarchical Frameworks with Tuned Pore Structure and N,O-Co-Doping for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 31940-31949.	8.0	53
102	In-situ surface chemical and structural self-reconstruction strategy enables high performance of Li-rich cathode. Nano Energy, 2021, 79, 105459.	16.0	53
103	Synthesis of layered microporous carbons from coal tar by directing, space-confinement and self-sacrificed template strategy for supercapacitors. Electrochimica Acta, 2017, 246, 634-642.	5.2	52
104	Graphene Oxide-Tuned MoS ₂ with an Expanded Interlayer for Efficient Hybrid Capacitive Deionization. ACS Sustainable Chemistry and Engineering, 2020, 8, 9690-9697.	6.7	50
105	Carbon-enabled microwave chemistry: From interaction mechanisms to nanomaterial manufacturing. Nano Energy, 2021, 85, 106027.	16.0	50
106	A durable MXene-based zinc ion hybrid supercapacitor with sulfated polysaccharide reinforced hydrogel/electrolyte. Journal of Materials Chemistry A, 2021, 9, 23941-23954.	10.3	49
107	Ultrahighâ€Capacity and Longâ€Life Lithium–Metal Batteries Enabled by Engineering Carbon Nanofiber–Stabilized Graphene Aerogel Film Host. Small, 2018, 14, e1803310.	10.0	48
108	Regulated lithium plating and stripping by a nano-scale gradient inorganic–organic coating for stable lithium metal anodes. Energy and Environmental Science, 2021, 14, 4085-4094.	30.8	48

#	Article	IF	CITATIONS
109	Strategies to activate inert nitrogen molecules for efficient ammonia electrosynthesis: current status, challenges, and perspectives. Energy and Environmental Science, 2022, 15, 2776-2805.	30.8	48
110	Towards efficient electrocatalysts for oxygen reduction by doping cobalt into graphene-supported graphitic carbon nitride. Journal of Materials Chemistry A, 2015, 3, 19657-19661.	10.3	47
111	Transition of the Reaction from Threeâ€Phase to Twoâ€Phase by Using a Hybrid Conductor for Highâ€Energyâ€Density Highâ€Rate Solidâ€State Liâ€O ₂ Batteries. Angewandte Chemie - Internatio Edition, 2021, 60, 5821-5826.	næsl.8	47
112	Microwaveâ€Assisted Ultrafast Synthesis of Molybdenum Carbide Nanoparticles Grown on Carbon Matrix for Efficient Hydrogen Evolution Reaction. Small Methods, 2019, 3, 1900259.	8.6	46
113	Electrochemically Driven Coordination Tuning of FeOOH Integrated on Carbon Fiber Paper for Enhanced Oxygen Evolution. Small, 2019, 15, e1901015.	10.0	46
114	Stable Silicon Anodes by Molecular Layer Deposited Artificial Zincone Coatings. Advanced Functional Materials, 2021, 31, 2010526.	14.9	46
115	Halide-based solid-state electrolyte as an interfacial modifier for high performance solid-state Li–O2 batteries. Nano Energy, 2020, 75, 105036.	16.0	45
116	Ultrasmall diiron phosphide nanodots anchored on graphene sheets with enhanced electrocatalytic activity for hydrogen production via high-efficiency water splitting. Journal of Materials Chemistry A, 2016, 4, 16028-16035.	10.3	44
117	Operando Tailoring of Defects and Strains in Corrugated βâ€Ni(OH) ₂ Nanosheets for Stable and Highâ€Rate Energy Storage. Advanced Materials, 2021, 33, e2006147.	21.0	44
118	Mismatching integration-enabled strains and defects engineering in LDH microstructure for high-rate and long-life charge storage. Nature Communications, 2022, 13, 1409.	12.8	42
119	A 3D-printed ultra-high Se loading cathode for high energy density quasi-solid-state Li–Se batteries. Journal of Materials Chemistry A, 2020, 8, 278-286.	10.3	41
120	Three-dimensional hierarchical Na3Fe2(PO4)3/C with superior and fast sodium uptake for efficient hybrid capacitive deionization. Desalination, 2021, 520, 115341.	8.2	41
121	Suppressed dendrite formation realized by selective Li deposition in all-solid-state lithium batteries. Energy Storage Materials, 2020, 27, 198-204.	18.0	40
122	3D Porous Garnet/Gel Polymer Hybrid Electrolyte for Safe Solid-State Li–O ₂ Batteries with Long Lifetimes. Chemistry of Materials, 2020, 32, 10113-10119.	6.7	39
123	A multi-interface CoNi-SP/C heterostructure for quasi-solid-state hybrid supercapacitors with a graphene oxide-containing hydrogel electrolyte. Journal of Materials Chemistry A, 2022, 10, 4671-4682.	10.3	39
124	High performance concentration capacitors with graphene hydrogel electrodes for harvesting salinity gradient energy. Journal of Materials Chemistry A, 2018, 6, 4981-4987.	10.3	38
125	Scalable synthesis of 2D hydrogen-substituted graphdiyne on Zn substrate for high-yield N2 fixation. Nano Energy, 2020, 78, 105283.	16.0	38
126	Full Bulkâ€Structure Reconstruction into Amorphorized Cobalt–Iron Oxyhydroxide Nanosheet Electrocatalysts for Greatly Improved Electrocatalytic Activity. Small Methods, 2020, 4, 2000546.	8.6	38

#	Article	IF	CITATIONS
127	An effective graphene confined strategy to construct active edge sites-enriched nanosheets with enhanced oxygen evolution. Carbon, 2018, 126, 437-442.	10.3	37
128	3D Printing of Free-Standing "O ₂ Breathable―Air Electrodes for High-Capacity and Long-Life Na–O ₂ Batteries. Chemistry of Materials, 2020, 32, 3018-3027.	6.7	37
129	Tailoring the Mechanical and Electrochemical Properties of an Artificial Interphase for Highâ€Performance Metallic Lithium Anode. Advanced Energy Materials, 2020, 10, 2001139.	19.5	36
130	Toward an Understanding of the Enhanced CO ₂ Electroreduction in NaCl Electrolyte over CoPc Moleculeâ€Implanted Graphitic Carbon Nitride Catalyst. Advanced Energy Materials, 2021, 11, 2100075.	19.5	36
131	Polystyrene sphere-mediated ultrathin graphene sheet-assembled frameworks for high-power density Li–O ₂ batteries. Chemical Communications, 2015, 51, 13233-13236.	4.1	35
132	NiWO4/Ni/Carbon Composite Fibres for Supercapacitors with Excellent Cycling Performance. Electrochimica Acta, 2016, 222, 446-454.	5.2	35
133	Interface Engineering of Ni ₃ N@Fe ₃ N Heterostructure Supported on Carbon Fiber for Enhanced Water Oxidation. Industrial & Samp; Engineering Chemistry Research, 2017, 56, 14245-14251.	3.7	35
134	Ultralongâ€Life Quasiâ€Solidâ€State Liâ€O ₂ Batteries Enabled by Coupling Advanced Air Electrode Design with Li Metal Anode Protection. Small Methods, 2019, 3, 1800437.	8.6	35
135	Polyethyleneimine-Mediated Fabrication of Two-Dimensional Cobalt Sulfide/Graphene Hybrid Nanosheets for High-Performance Supercapacitors. ACS Applied Materials & Diterfaces, 2019, 11, 26235-26242.	8.0	35
136	Implanting CNT Forest onto Carbon Nanosheets as Multifunctional Hosts for Highâ€Performance Lithium Metal Batteries. Small Methods, 2019, 3, 1800546.	8.6	34
137	Tailor-made graphene aerogels with inbuilt baffle plates by charge-induced template-directed assembly for high-performance Li–S batteries. Journal of Materials Chemistry A, 2015, 3, 21842-21848.	10.3	33
138	Ternary NiFeMn layered metal oxide (LDO) compounds for capacitive deionization defluoridation: The unique role of Mn. Separation and Purification Technology, 2021, 254, 117667.	7.9	33
139	Ultrafine Fe ₃ O ₄ Quantum Dots on Hybrid Carbon Nanosheets for Longâ€Life, Highâ€Rate Alkaliâ€Metal Storage. ChemElectroChem, 2016, 3, 38-44.	3.4	32
140	CoS nanosheets-coupled graphene quantum dots architectures as a binder-free counter electrode for high-performance DSSCs. Science China Materials, 2016, 59, 104-111.	6.3	32
141	Nitrogen-doped tubular/porous carbon channels implanted on graphene frameworks for multiple confinement of sulfur and polysulfides. Journal of Materials Chemistry A, 2017, 5, 10380-10386.	10.3	32
142	Ultrathin Nitrogenâ€Enriched Hybrid Carbon Nanosheets for Supercapacitors with Ultrahigh Rate Performance and High Energy Density. ChemElectroChem, 2017, 4, 369-375.	3.4	32
143	Oriented Nanosheet-Assembled CoNi-LDH Cages with Efficient Ion Diffusion for Quasi-Solid-State Hybrid Supercapacitors. Inorganic Chemistry, 2021, 60, 12197-12205.	4.0	32
144	High performance asymmetric capacitive mixing with oppositely charged carbon electrodes for energy production from salinity differences. Journal of Materials Chemistry A, 2017, 5, 20374-20380.	10.3	31

#	Article	IF	Citations
145	Designed synthesis of cobalt nanoparticles embedded carbon nanocages as bifunctional electrocatalysts for oxygen evolution and reduction. Carbon, 2019, 144, 492-499.	10.3	31
146	Boosting charge storage in 1D manganese oxide-carbon composite by phosphorus-assisted structural modification for supercapacitor applications. Energy Storage Materials, 2020, 31, 172-180.	18.0	30
147	Phosphate Species up to 70% Mass Ratio for Enhanced Pseudocapacitive Properties. Small, 2018, 14, e1803811.	10.0	29
148	Insights into the electronic origin of enhancing the catalytic activity of Co3O4 for oxygen evolution by single atom ruthenium. Nano Today, 2020, 34, 100955.	11.9	29
149	Hierarchical Hybrids Integrated by Dual Polypyrroleâ€Based Porous Carbons for Enhanced Capacitive Performance. Chemistry - A European Journal, 2017, 23, 13474-13481.	3.3	28
150	Scrutinizing Defects and Defect Density of Seleniumâ€Doped Graphene for Highâ€Efficiency Triiodide Reduction in Dyeâ€Sensitized Solar Cells. Angewandte Chemie, 2018, 130, 4772-4776.	2.0	28
151	Porous polyaniline arrays oriented on functionalized carbon cloth as binder-free electrode for flexible supercapacitors. Journal of Electroanalytical Chemistry, 2019, 848, 113348.	3.8	27
152	Long life rechargeable Li-O2 batteries enabled by enhanced charge transfer in nanocable-like Fe@N-doped carbon nanotube catalyst. Science China Materials, 2017, 60, 415-426.	6.3	26
153	Facile Fabrication of Bicomponent CoO/CoFe ₂ O ₄ â€Nâ€Doped Graphene Hybrids with Ultrahigh Lithium Storage Capacity. Particle and Particle Systems Characterization, 2015, 32, 91-97.	2.3	25
154	In-situ growth of highly uniform and single crystalline Co3O4 nanocubes on graphene for efficient oxygen evolution. Catalysis Communications, 2017, 88, 81-84.	3.3	25
155	The Electrolysis of Antiâ€Perovskite Li ₂ OHCl for Prelithiation of Highâ€Energyâ€Density Batteries. Angewandte Chemie - International Edition, 2021, 60, 13013-13020.	13.8	25
156	O ₂ /O ₂ [–] Crossover- and Dendrite-Free Hybrid Solid-State Na–O ₂ Batteries. Chemistry of Materials, 2019, 31, 9024-9031.	6.7	24
157	Sodium Metal Anodes with Selfâ€Correction Function Based on Fluorineâ€Superdoped CNTs/Cellulose Nanofibrils Composite Paper. Advanced Functional Materials, 2022, 32, .	14.9	24
158	A recyclable route to produce biochar with a tailored structure and surface chemistry for enhanced charge storage. Green Chemistry, 2019, 21, 2095-2103.	9.0	23
159	Hierarchically porous carbon architectures embedded with hollow nanocapsules for high-performance lithium storage. Journal of Materials Chemistry A, 2015, 3, 5054-5059.	10.3	22
160	Reviving Anode Protection Layer in Naâ€O ₂ Batteries: Failure Mechanism and Resolving Strategy. Advanced Energy Materials, 2021, 11, 2003789.	19.5	22
161	Operando leaching of pre-incorporated Al and mechanism in transition-metal hybrids on carbon substrates for enhanced charge storage. Matter, 2021, 4, 2902-2918.	10.0	22
162	Ultraâ€High Fluorine Enhanced Homogeneous Nucleation of Lithium Metal on Stepped Carbon Nanosheets with Abundant Edge Sites. Advanced Energy Materials, 2022, 12, .	19.5	22

#	Article	IF	CITATIONS
163	In Situ Growing Chromium Oxynitride Nanoparticles on Carbon Nanofibers to Stabilize Lithium Deposition for Lithium Metal Anodes. Small, 2020, 16, e2003827.	10.0	21
164	Dual Hybrid Effect Endowing Nickel–Cobalt Sulfides with Enhanced Cycling Stability for Asymmetrical Supercapacitors. ACS Applied Energy Materials, 2020, 3, 6977-6984.	5.1	21
165	Graphite-graphene architecture stabilizing ultrafine Co3O4 nanoparticles for superior oxygen evolution. Carbon, 2018, 140, 17-23.	10.3	20
166	Ultrafast Construction of Oxygen-Containing Scaffold over Graphite for Trapping Ni ²⁺ into Single Atom Catalysts. ACS Nano, 2020, 14, 11662-11669.	14.6	20
167	NH ₄ V ₄ O ₁₀ /rGO Composite as a high-performance electrode material for hybrid capacitive deionization. Environmental Science: Water Research and Technology, 2020, 6, 303-311.	2.4	19
168	A tuned Lewis acidic catalyst guided by hard–soft acid–base theory to promote N ₂ electroreduction. Journal of Materials Chemistry A, 2021, 9, 13036-13043.	10.3	19
169	Insight into the Effects of Current Collectors and In Situ Ni Leaching in Highâ€Voltage Aqueous Supercapacitors. Advanced Functional Materials, 2022, 32, .	14.9	19
170	Hierarchical Carbonâ€Encapsulated Iron Nanoparticles as a Magnetically Separable Adsorbent for Removing Thiophene in Liquid Fuel. Particle and Particle Systems Characterization, 2013, 30, 637-644.	2.3	18
171	Highly Stable Lithium Metal Anode Interface via Molecular Layer Deposition Zircone Coatings for Long Life Nextâ€Generation Battery Systems. Angewandte Chemie, 2019, 131, 15944-15949.	2.0	18
172	A Phase Transformationâ€Resistant Electrode Enabled by a MnO ₂ â€Confined Effect for Enhanced Energy Storage. Advanced Functional Materials, 2019, 29, 1901342.	14.9	18
173	An electrocatalyst with anti-oxidized capability for overall water splitting. Nano Research, 2018, 11, 3411-3418.	10.4	16
174	Engineering a "nanonet―reinforced polymer electrolyte for long-life Li–O2 batteries. Journal of Materials Chemistry A, 2019, 7, 24947-24952.	10.3	16
175	Co ion-intercalation amorphous and ultrathin microstructure for high-rate oxygen evolution. Energy Storage Materials, 2018, 10, 291-296.	18.0	14
176	Transition of the Reaction from Threeâ€Phase to Twoâ€Phase by Using a Hybrid Conductor for Highâ€Energyâ€Density Highâ€Rate Solidâ€State Liâ€O ₂ Batteries. Angewandte Chemie, 2021, 133 5885-5890.	, 2.0	14
177	Synthesis of 3D Flowerâ€like Nanocomposites of Nitrogenâ€Doped Carbon Nanosheets Embedded with Hollow Cobalt(II,III) Oxide Nanospheres for Lithium Storage. ChemElectroChem, 2017, 4, 102-108.	3.4	13
178	DBD plasma-tuned functionalization of edge-enriched graphene nanoribbons for high performance supercapacitors. Electrochimica Acta, 2020, 337, 135741.	5.2	13
179	Activity descriptor of Ni,N-Codoped carbon electrocatalyst in CO2 electroreduction reaction. Chemical Engineering Journal, 2022, 433, 131965.	12.7	13
180	Graphene oxide induced fabrication of pillared and double-faced polyaniline arrays with enhanced triiodide reduction capability. Electrochimica Acta, 2017, 252, 84-90.	5.2	12

#	Article	IF	Citations
181	Hierarchical Bimetallic Hydroxides Built by Porous Nanowire‣apped Bundles with Ultrahigh Areal Capacity for Stable Hybrid Solidâ€State Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1900959.	3.7	12
182	Fabrication of nitrogen-doped porous graphene hybrid nanosheets from metal–organic frameworks for lithium-ion batteries. Nanotechnology, 2020, 31, 145402.	2.6	12
183	Fabrication of Porous Carbon Nanosheets with the Engineered Graphitic Structure for Electrochemical Supercapacitors. Industrial & Engineering Chemistry Research, 2020, 59, 13623-13630.	3.7	12
184	Achieving Multiple and Tunable Ratios of Syngas to Meet Various Downstream Industrial Processes. ACS Sustainable Chemistry and Engineering, 2020, 8, 3328-3335.	6.7	11
185	Theoretical and Experimental Insights into the Effects of Oxygen-Containing Species within CNTs toward Triiodide Reduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 7527-7534.	6.7	10
186	Energy Accumulation Enabling Fast Synthesis of Intercalated Graphite and Operando Decoupling for Lithium Storage. Advanced Functional Materials, 2021, 31, 2009801.	14.9	9
187	Controlled Fabrication of Interconnected Porous Carbon Nanosheets for Supercapacitors with a Long Cycle Life. ChemElectroChem, 2017, 4, 3196-3203.	3.4	8
188	Electric-Field-Triggered Graphene Production: From Fundamental Energy Applications to Perspectives. Accounts of Materials Research, 2022, 3, 175-186.	11.7	8
189	Interlayerâ€Expanded Titanate Hierarchical Hollow Spheres Embedded in Carbon Nanofibers for Enhanced Na Storage. Small, 2022, 18, e2107890.	10.0	8
190	Template-free synthesis of interconnected carbon nanosheets <i>via</i> cross-linking coupled with annealing for high-efficiency triiodide reduction. Green Chemistry, 2018, 20, 250-254.	9.0	7
191	Multilevel Coupled Hybrids Made of Porous Cobalt Oxides and Graphene for Highâ€Performance Lithium Storage. Chemistry - A European Journal, 2019, 25, 5527-5533.	3.3	6
192	Interface Inversion: A Promising Strategy to Configure Ultrafine Nanoparticles over Graphene for Fast Sodium Storage. Small, 2021, 17, 2005119.	10.0	6
193	Insight into the Inhibition of Shuttle by Metal-Modified Covalent Triazine Frameworks and Graphene Composites with the Solvent Interaction in Lithium Sulfur Batteries. ACS Applied Energy Materials, 2022, 5, 825-831.	5.1	6
194	Multilayer-Dense Porous Carbon Nanosheets with High Volumetric Capacitance for Supercapacitors. Industrial & Description of the Research, 2022, 61, 8908-8917.	3.7	6
195	Graphene Nanoribbons: Nitrogenâ€Doped Graphene Nanoribbons with Surface Enriched Active Sites and Enhanced Performance for Dyeâ€Sensitized Solar Cells (Adv. Energy Mater. 11/2015). Advanced Energy Materials, 2015, 5, .	19.5	4
196	The Electrolysis of Antiâ€Perovskite Li ₂ OHCl for Prelithiation of Highâ€Energyâ€Density Batteries. Angewandte Chemie, 2021, 133, 13123-13130.	2.0	4
197	A Dual Component Catalytic System Composed of Nonâ€Noble Metal Oxides for Li–O ₂ Batteries with Enhanced Cyclability. Particle and Particle Systems Characterization, 2016, 33, 228-234.	2.3	3
198	Monolithic Electrodes: Ultrafast Selfâ€Assembly of Graphene Oxideâ€Induced Monolithic NiCo–Carbonate Hydroxide Nanowire Architectures with a Superior Volumetric Capacitance for Supercapacitors (Adv. Funct. Mater. 14/2015). Advanced Functional Materials, 2015, 25, 2203-2203.	14.9	2

#	Article	IF	CITATIONS
199	Glutamic acid-assisted hydrothermal recrystallization to configure bamboo-like carbon nanotubes for improved triiodide reduction. Chinese Journal of Chemical Engineering, 2021, 37, 159-167.	3.5	1
200	<i>Operando</i> Leaching of Pre-Incorporated Al and Mechanism in Transition Metal Hybrids for Elaborately Enhanced Charge Storage. SSRN Electronic Journal, 0, , .	0.4	0