
Luz Torner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1739094/publications.pdf Version: 2024-02-01

LUZ TODNED

#	Article	IF	CITATIONS
1	Dietary flavonoid kaempferol reduces obesity-associated hypothalamic microglia activation and promotes body weight loss in mice with obesity. Nutritional Neuroscience, 2023, 26, 25-39.	3.1	11
2	Metabolic and neurological consequences of the treatment with polyphenols: a systematic review in rodent models of noncommunicable diseases. Nutritional Neuroscience, 2022, 25, 1680-1696.	3.1	11
3	Long-term activation of hippocampal glial cells and altered emotional behavior in male and female adult rats after different neonatal stressors. Psychoneuroendocrinology, 2021, 126, 105164.	2.7	19
4	A systematic review of neurogenesis in animal models of early brain damage: Implications for cerebral palsy. Experimental Neurology, 2021, 340, 113643.	4.1	14
5	Melatonin Decreases Circulating Levels of Galectin-3 and Cytokines, Motor Activity, and Anxiety Following Acute Global Cerebral Ischemia in Male Rats. Archives of Medical Research, 2021, 52, 505-513.	3.3	6
6	The 5â€HT 1A receptor agonist, 8â€OHâ€DPAT, Attenuates Longâ€Lasting Pain in Imiquimodâ€Induced Psoriasis Mice Experimental Dermatology, 2021, , .	in_ 2.9	0
7	Prenatal immobilization stress and postnatal maternal separation cause differential neuroendocrine responses to fasting stress in adult male rats. Developmental Psychobiology, 2020, 62, 737-748.	1.6	9
8	Addition of <i>Opuntia ficus-indica</i> Reduces Hypothalamic Microglial Activation and Improves Metabolic Alterations in Obese Mice Exposed to a High-fat Diet. Journal of Food and Nutrition Research (Newark, Del), 2020, 8, 473-483.	0.3	4
9	Early-life stress increases granule cell density in the cerebellum of male rats. Brain Research, 2019, 1723, 146358.	2.2	4
10	Tau Phosphorylation in Female Neurodegeneration: Role of Estrogens, Progesterone, and Prolactin. Frontiers in Endocrinology, 2018, 9, 133.	3.5	32
11	Global Effects of Early Life Stress on Neurons and Glial Cells. Current Pharmaceutical Design, 2018, 23, 6042-6049.	1.9	4
12	Forced swimming-induced oxytocin release into blood and brain: Effects of adrenalectomy and corticosterone treatment. Psychoneuroendocrinology, 2017, 77, 165-174.	2.7	53
13	Corrigendum to "Forced swimming-induced oxytocin release into blood and brain: Effects of adrenalectomy and corticosterone treatment―[Psychoneuroendocrinology 77 (2017) 165–174]. Psychoneuroendocrinology, 2017, 85, 218.	2.7	0
14	Early Life Stress Activates Glial Cells in the Hippocampus but Attenuates Cytokine Secretion in Response to an Immune Challenge in Rat Pups. NeuroImmunoModulation, 2017, 24, 242-255.	1.8	33
15	Actions of Prolactin in the Brain: From Physiological Adaptations to Stress and Neurogenesis to Psychopathology. Frontiers in Endocrinology, 2016, 7, 25.	3.5	106
16	Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels. Brain, Behavior, and Immunity, 2016, 55, 39-48.	4.1	143
17	Early life stress and hippocampal neurogenesis in the neonate: sexual dimorphism, long term consequences and possible mediators. Frontiers in Molecular Neuroscience, 2015, 8, 3.	2.9	64
18	Prolactin-derived vasoinhibins increase anxiety- and depression-related behaviors. Psychoneuroendocrinology, 2014, 44, 123-132.	2.7	32

Luz Torner

#	Article	IF	CITATIONS
19	Prolactin administration during early postnatal life decreases hippocampal and olfactory bulb neurogenesis and results in depressive-like behavior in adulthood. Hormones and Behavior, 2013, 64, 781-789.	2.1	19
20	Hyperprolactinemia impairs object recognition without altering spatial learning in male rats. Behavioural Brain Research, 2013, 252, 32-39.	2.2	25
21	Periodic maternal separation decreases hippocampal neurogenesis without affecting basal corticosterone during the stress hyporesponsive period, but alters HPA axis and coping behavior in adulthood. Psychoneuroendocrinology, 2012, 37, 410-420.	2.7	128
22	Prolactin Activates Mitogen-Activated Protein Kinase Signaling and Corticotropin Releasing Hormone Transcription in Rat Hypothalamic Neurons. Endocrinology, 2009, 150, 1841-1849.	2.8	45
23	Prolactin Prevents Chronic Stress-Induced Decrease of Adult Hippocampal Neurogenesis and Promotes Neuronal Fate. Journal of Neuroscience, 2009, 29, 1826-1833.	3.6	123
24	Prolactin induces Egr-1 gene expression in cultured hypothalamic cells and in the rat hypothalamus. Brain Research, 2009, 1302, 34-41.	2.2	11
25	Oxytocin reduces anxiety via ERK1/2 activation: local effect within the rat hypothalamic paraventricular nucleus. European Journal of Neuroscience, 2008, 27, 1947-1956.	2.6	221
26	Role of Prolactin in the Behavioral and Neuroendocrine Stress Adaptations During Lactation. , 2008, , 131-143.		0
27	Low inborn anxiety correlates with high intermale aggression: Link to ACTH response and neuronal activation of the hypothalamic paraventricular nucleus. Hormones and Behavior, 2007, 51, 11-19.	2.1	92
28	Oxytocin actions within the supraoptic and paraventricular nuclei: differential effects on peripheral and intranuclear vasopressin release. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R29-R36.	1.8	34
29	Prolactin regulates gene expression via activation of the ERK1/2 cascade in the hypothalamus and in hypothalamic cell lines in vitro. Frontiers in Neuroendocrinology, 2006, 27, 151.	5.2	1
30	In vivo release and gene upregulation of brain prolactin in response to physiological stimuli. European Journal of Neuroscience, 2004, 19, 1601-1608.	2.6	88
31	Prolactin and 16K Prolactin Stimulate Release of Vasopressin by a Direct Effect on Hypothalamo-Neurohypophyseal System. Endocrine, 2003, 20, 155-162.	2.2	31
32	No Stress Response of the Hypothalamo-Pituitary-Adrenal Axis in Parturient Rats: Lack of Involvement of Brain Oxytocin. Endocrinology, 2003, 144, 2473-2479.	2.8	41
33	The Brain Prolactin System: Involvement in Stress Response Adaptations in Lactation. Stress, 2002, 5, 249-257.	1.8	138
34	Increased hypothalamic expression of prolactin in lactation: involvement in behavioural and neuroendocrine stress responses. European Journal of Neuroscience, 2002, 15, 1381-1389.	2.6	184
35	Anxiolytic and Anti-Stress Effects of Brain Prolactin: Improved Efficacy of Antisense Targeting of the Prolactin Receptor by Molecular Modeling. Journal of Neuroscience, 2001, 21, 3207-3214.	3.6	238
36	Maternal defence as an emotional stressor in female rats: correlation of neuroendocrine and behavioural parameters and involvement of brain oxytocin. European Journal of Neuroscience, 2001, 13, 1016-1024.	2.6	142

Luz Torner

#	Article	IF	CITATIONS
37	Human umbilical vein endothelial cells express multiple prolactin isoforms. Journal of Endocrinology, 2000, 166, 53-62.	2.6	46
38	Brain Oxytocin Inhibits Basal and Stressâ€Induced Activity of the Hypothalamoâ€Pituitaryâ€Adrenal Axis in Male and Female Rats: Partial Action Within the Paraventricular Nucleus. Journal of Neuroendocrinology, 2000, 12, 235-243.	2.6	370
39	Changes in the expression of neurohypophyseal prolactins during the estrous cycle and after estrogen treatment. Journal of Endocrinology, 1999, 161, 423-432.	2.6	39
40	Brain oxytocin: differential inhibition of neuroendocrine stress responses and anxiety-related behaviour in virgin, pregnant and lactating rats. Neuroscience, 1999, 95, 567-575.	2.3	332
41	Inhibition of rat corneal angiogenesis by 16-kDa prolactin and by endogenous prolactin-like molecules. Investigative Ophthalmology and Visual Science, 1999, 40, 2498-505.	3.3	55
42	Expression of prolactin mRNA and of prolactin-like proteins in endothelial cells: evidence for autocrine effects. Journal of Endocrinology, 1998, 158, 137-144.	2.6	68
43	Immunoreactive prolactins of the neurohypophyseal system display actions characteristic of prolactin and 16K prolactin. Endocrine, 1995, 3, 573-578.	2.3	8
44	A 14-kilodalton prolactin-like fragment is secreted by the hypothalamo-neurohypophyseal system of the rat Endocrinology, 1995, 136, 5454-5460.	2.8	42
45	The prolactin gene is expressed in the hypothalamic-neurohypophyseal system and the protein is processed into a 14-kDa fragment with activity like 16-kDa prolactin Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10384-10388.	7.1	95
46	Negative Effects on Neurogenesis, Ovariogenesis, and Fitness in Sea Turtle Hatchlings Associated to ex situ Incubation Management. Frontiers in Ecology and Evolution, 0, 10, .	2.2	2