
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1738964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced CNS transduction from AAV.PHP.eB infusion into the cisterna magna of older adult rats compared to AAV9. Gene Therapy, 2022, 29, 390-397.	4.5	17
2	In situ proximity labeling identifies Lewy pathology molecular interactions in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	16
3	Optimizing maturity and dose of iPSC-derived dopamine progenitor cell therapy for Parkinson's disease. Npj Regenerative Medicine, 2022, 7, 24.	5.2	28
4	The Unbearable Lightness of Brundin. Journal of Parkinson's Disease, 2022, 12, 1069-1072.	2.8	0
5	Inflammation in Experimental Models of α <scp>â€Synucleinopathies</scp> . Movement Disorders, 2021, 36, 37-49.	3.9	24
6	Viral-based rodent and nonhuman primate models of multiple system atrophy: Fidelity to the human disease. Neurobiology of Disease, 2021, 148, 105184.	4.4	14
7	A novel tauâ€based rhesus monkey model of Alzheimer's pathogenesis. Alzheimer's and Dementia, 2021, 17, 933-945.	0.8	42
8	Reply to: "Cell Therapy for Huntington's Disease: Learning from Failure― Movement Disorders, 2021, 36, 788-789.	3.9	1
9	GDNF signaling in subjects with minimal motor deficits and Parkinson's disease. Neurobiology of Disease, 2021, 153, 105298.	4.4	18
10	SeqStain is an efficient method for multiplexed, spatialomic profiling of human and murine tissues. Cell Reports Methods, 2021, 1, 100006.	2.9	7
11	Mitomycin-C treatment during differentiation of induced pluripotent stem cell-derived dopamine neurons reduces proliferation without compromising survival or function in vivo. Stem Cells Translational Medicine, 2021, 10, 278-290.	3.3	12
12	A historical review of multiple system atrophy with a critical appraisal of cellular and animal models. Journal of Neural Transmission, 2021, 128, 1507-1527.	2.8	9
13	Chronic stress-induced gut dysfunction exacerbates Parkinson's disease phenotype and pathology in a rotenone-induced mouse model of Parkinson's disease. Neurobiology of Disease, 2020, 135, 104352.	4.4	172
14	Reply to: "Toward a Personalized Approach to Parkinson's Cell Therapy― Movement Disorders, 2020, 35, 2120-2121.	3.9	0
15	A Failed Future. Movement Disorders, 2020, 35, 1299-1301.	3.9	4
16	Anti-α-synuclein ASO delivered to monoamine neurons prevents α-synuclein accumulation in a Parkinson's disease-like mouse model and in monkeys. EBioMedicine, 2020, 59, 102944.	6.1	45
17	Long-term, stable, targeted biodelivery and efficacy of GDNF from encapsulated cells in the rat and Goettingen miniature pig brain. Current Research in Pharmacology and Drug Discovery, 2020, 1, 19-29.	3.6	6
18	GDNF and Parkinson's Disease: Where Next? A Summary from a Recent Workshop. Journal of Parkinson's Disease, 2020, 10, 875-891.	2.8	63

#	Article	IF	CITATIONS
19	Stem Cells: Scientific and Ethical Quandaries of a Personalized Approach to Parkinson's Disease. Movement Disorders, 2020, 35, 1312-1314.	3.9	14
20	Long-term post-mortem studies following neurturin gene therapy in patients with advanced Parkinson's disease. Brain, 2020, 143, 960-975.	7.6	56
21	Does Developmental Variability in the Number of Midbrain Dopamine Neurons Affect Individual Risk for Sporadic Parkinson's Disease?. Journal of Parkinson's Disease, 2020, 10, 405-411.	2.8	18
22	T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. Acta Neuropathologica, 2020, 139, 855-874.	7.7	66
23	Striatal Nurr1 Facilitates the Dyskinetic State and Exacerbates Levodopa-Induced Dyskinesia in a Rat Model of Parkinson's Disease. Journal of Neuroscience, 2020, 40, 3675-3691.	3.6	15
24	Human autologous iPSC–derived dopaminergic progenitors restore motor function in Parkinson's disease models. Journal of Clinical Investigation, 2020, 130, 904-920.	8.2	102
25	Intrastriatal alpha-synuclein fibrils in monkeys: spreading, imaging and neuropathological changes. Brain, 2019, 142, 3565-3579.	7.6	80
26	Immunotherapy in Parkinson's disease: Current status and future directions. Neurobiology of Disease, 2019, 132, 104587.	4.4	41
27	Spreading of alphaâ€synuclein – relevant or epiphenomenon?. Journal of Neurochemistry, 2019, 150, 605-611.	3.9	34
28	Temporal evolution of microglia and α-synuclein accumulation following foetal grafting in Parkinson's disease. Brain, 2019, 142, 1690-1700.	7.6	75
29	Low-Dose Maraviroc, an Antiretroviral Drug, Attenuates the Infiltration of T Cells into the Central Nervous System and Protects the Nigrostriatum in Hemiparkinsonian Monkeys. Journal of Immunology, 2019, 202, 3412-3422.	0.8	18
30	Parkinson's disease gene therapy: Will focused ultrasound and nanovectors be the next frontier?. Movement Disorders, 2019, 34, 1279-1282.	3.9	14
31	Widespread Striatal Delivery of GDNF from Encapsulated Cells Prevents the Anatomical and Functional Consequences of Excitotoxicity. Neural Plasticity, 2019, 2019, 1-9.	2.2	12
32	Loss of One Engrailed1 Allele Enhances Induced α-Synucleinopathy. Journal of Parkinson's Disease, 2019, 9, 315-326.	2.8	12
33	Endogenous alpha-synuclein monomers, oligomers and resulting pathology: let's talk about the lipids in the room. Npj Parkinson's Disease, 2019, 5, 23.	5.3	57
34	Role of TLR4 in the gut-brain axis in Parkinson's disease: a translational study from men to mice. Gut, 2019, 68, 829-843.	12.1	290
35	Disease Modification for Parkinson's Disease: Axonal Regeneration and Trophic Factors. Movement Disorders, 2018, 33, 678-683.	3.9	24
36	Probing the striatal dopamine system for a putative neuroprotective effect of deep brain stimulation in Parkinson's disease. Movement Disorders, 2018, 33, 652-654.	3.9	5

#	Article	IF	CITATIONS
37	Induction of alpha-synuclein pathology in the enteric nervous system of the rat and non-human primate results in gastrointestinal dysmotility and transient CNS pathology. Neurobiology of Disease, 2018, 112, 106-118.	4.4	127
38	Do subjects with minimal motor features have prodromal Parkinson disease?. Annals of Neurology, 2018, 83, 562-574.	5.3	31
39	Detecting Alpha Synuclein Seeding Activity in Formaldehyde-Fixed MSA Patient Tissue by PMCA. Molecular Neurobiology, 2018, 55, 8728-8737.	4.0	38
40	α-Synuclein nonhuman primate models of Parkinson's disease. Journal of Neural Transmission, 2018, 125, 385-400.	2.8	27
41	Proteasome-targeted nanobodies alleviate pathology and functional decline in an α-synuclein-based Parkinson's disease model. Npj Parkinson's Disease, 2018, 4, 25.	5.3	61
42	Disease Modification Through Trophic Factor Delivery. Methods in Molecular Biology, 2018, 1780, 525-547.	0.9	7
43	Analysis of age-related changes in psychosine metabolism in the human brain. PLoS ONE, 2018, 13, e0193438.	2.5	24
44	Targeting α-Synuclein as a therapy for Parkinson's disease: The battle begins. Movement Disorders, 2017, 32, 203-207.	3.9	26
45	The Potential Role of Gut-Derived Inflammation in Multiple System Atrophy. Journal of Parkinson's Disease, 2017, 7, 331-346.	2.8	68
46	What would Dr. James Parkinson think today? parcelling out the circuitry of levodopaâ€induced dyskinesias. Movement Disorders, 2017, 32, 483-484.	3.9	0
47	Robust graft survival and normalized dopaminergic innervation do not obligate recovery in a <scp>P</scp> arkinson disease patient. Annals of Neurology, 2017, 81, 46-57.	5.3	72
48	Aging and Parkinson's disease: Different sides of the same coin?. Movement Disorders, 2017, 32, 983-990.	3.9	192
49	Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins. Acta Neuropathologica, 2017, 134, 629-653.	7.7	201
50	Cryopreservation Maintains Functionality of Human iPSC Dopamine Neurons and Rescues Parkinsonian Phenotypes InÂVivo. Stem Cell Reports, 2017, 9, 149-161.	4.8	66
51	Therapeutic approaches to target alpha-synuclein pathology. Experimental Neurology, 2017, 298, 225-235.	4.1	197
52	Presence of tau pathology within foetal neural allografts in patients with Huntington's and Parkinson's disease. Brain, 2017, 140, 2982-2992.	7.6	51
53	Cell Replacement Strategies for Parkinson's Disease. Molecular and Translational Medicine, 2017, , 73-83.	0.4	0
54	Novel oligodendroglial alpha synuclein viral vector models of multiple system atrophy: studies in rodents and nonhuman primates. Acta Neuropathologica Communications, 2017, 5, 47.	5.2	33

#	Article	IF	CITATIONS
55	Parkinsonian monkeys with prior levodopaâ€induced dyskinesias followed by fetal dopamine precursor grafts do not display graftâ€induced dyskinesias. Journal of Comparative Neurology, 2017, 525, 498-512.	1.6	6
56	The Critical Role of Nonhuman Primates in Medical Research - White Paper. Pathogens and Immunity, 2017, 2, 352.	3.1	70
57	Alterations in Activity-Dependent Neuroprotective Protein in Sporadic and Experimental Parkinson's Disease. Journal of Parkinson's Disease, 2016, 6, 77-97.	2.8	9
58	Preface. Movement Disorders, 2016, 31, 151-151.	3.9	0
59	Alphaâ€synuclein propagation: New insights from animal models. Movement Disorders, 2016, 31, 161-168.	3.9	100
60	ls Axonal Degeneration a Key Early Event in Parkinson's Disease?. Journal of Parkinson's Disease, 2016, 6, 703-707.	2.8	36
61	Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson's disease. Science Translational Medicine, 2016, 8, 368ra174.	12.4	143
62	How strong is the evidence that Parkinson's disease is a prion disorder?. Current Opinion in Neurology, 2016, 29, 459-466.	3.6	59
63	Neutralization of RANTES and Eotaxin Prevents the Loss of Dopaminergic Neurons in a Mouse Model of Parkinson Disease. Journal of Biological Chemistry, 2016, 291, 15267-15281.	3.4	69
64	Mechanisms for cell-to-cell propagation no longer lag behind. Movement Disorders, 2016, 31, 1798-1799.	3.9	2
65	Fetal grafts for Parkinson's disease: Decades in the making. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6332-6334.	7.1	8
66	TDPâ€43 Proteinopathy: Aggregation and Propagation in the Pathogenesis of Amyotrophic Lateral Sclerosis. Movement Disorders, 2016, 31, 1139-1139.	3.9	4
67	AAV2-Neurturin for Parkinson's Disease: What Lessons Have We Learned?. Methods in Molecular Biology, 2016, 1382, 485-490.	0.9	16
68	Trophic factors for Parkinson's disease: To live or let die. Movement Disorders, 2015, 30, 1715-1724.	3.9	55
69	Parkinson's disease and prion disease: Straining the comparison. Movement Disorders, 2015, 30, 1727-1727.	3.9	4
70	Gene delivery of neurturin to putamen and substantia nigra in <scp>P</scp> arkinson disease: A doubleâ€blind, randomized, controlled trial. Annals of Neurology, 2015, 78, 248-257.	5.3	224
71	PGCâ^'1α Promoter Methylation in Parkinson's Disease. PLoS ONE, 2015, 10, e0134087.	2.5	95
72	Analysis of YFP(<i>J16</i>)-R6/2 reporter mice and postmortem brains reveals early pathology and increased vulnerability of callosal axons in Huntington's disease. Human Molecular Genetics, 2015, 24, 5285-5298.	2.9	48

#	Article	IF	CITATIONS
73	Gene Therapy for Parkinson's Disease: Still a Hot Topic?. Neuropsychopharmacology, 2015, 40, 255-256.	5.4	18
74	The Prion Hypothesis of Parkinson's Disease. Current Neurology and Neuroscience Reports, 2015, 15, 28.	4.2	64
75	The native form of αâ€ S ynuclein: Monomer, tetramer, or a combination in equilibrium. Movement Disorders, 2015, 30, 1870-1870.	3.9	5
76	The prion hypothesis of Parkinson's disease: This hot topic just got hotter. Movement Disorders, 2014, 29, 988-988.	3.9	5
77	Abnormal alpha-synuclein reduces nigral voltage-dependent anion channel 1 in sporadic and experimental Parkinson's disease. Neurobiology of Disease, 2014, 69, 1-14.	4.4	56
78	A phase1 study of stereotactic gene delivery of AAV2â€NGF for Alzheimer's disease. Alzheimer's and Dementia, 2014, 10, 571-581.	0.8	173
79	Misfolded proteins in <scp>H</scp> untington disease fetal grafts: Further evidence of cellâ€ŧoâ€cell transfer?. Annals of Neurology, 2014, 76, 20-21.	5.3	2
80	Peripheral alphaâ€synuclein and Parkinson's disease. Movement Disorders, 2014, 29, 963-966.	3.9	32
81	Progression of intestinal permeability changes and alphaâ€synuclein expression in a mouse model of Parkinson's disease. Movement Disorders, 2014, 29, 999-1009.	3.9	202
82	Neonatal immune-tolerance in mice does not prevent xenograft rejection. Experimental Neurology, 2014, 254, 90-98.	4.1	24
83	Trophic Factor Gene Therapy for Parkinson's Disease. Movement Disorders, 2013, 28, 96-109.	3.9	113
84	Disease duration and the integrity of the nigrostriatal system in Parkinson's disease. Brain, 2013, 136, 2419-2431.	7.6	965
85	Can Intrabodies Serve as Neuroprotective Therapies for Parkinson's Disease? Beginning Thoughts. Journal of Parkinson's Disease, 2013, 3, 581-591.	2.8	18
86	Cell Therapy for Parkinson's Disease: What Next?. Movement Disorders, 2013, 28, 110-115.	3.9	57
87	In Memorium: Roy A.E. Bakay, MD. Movement Disorders, 2013, 28, 1809-1810.	3.9	3
88	Neuropathology in transplants in Parkinson's disease. Progress in Brain Research, 2012, 200, 221-241.	1.4	43
89	Gene therapy for Huntington's disease. Neurobiology of Disease, 2012, 48, 243-254.	4.4	56
90	Is alphaâ€synuclein in the colon a biomarker for premotor Parkinson's Disease? Evidence from 3 cases. Movement Disorders, 2012, 27, 716-719.	3.9	383

JEFFREY H KORDOWER

#	Article	IF	CITATIONS
91	Alterations in axonal transport motor proteins in sporadic and experimental Parkinson's disease. Brain, 2012, 135, 2058-2073.	7.6	249
92	Alphaâ€ s ynuclein in colonic submucosa in early untreated Parkinson's disease. Movement Disorders, 2012, 27, 709-715.	3.9	381
93	Ageing as a primary risk factor for Parkinson's disease: evidence from studies of non-human primates. Nature Reviews Neuroscience, 2011, 12, 359-366.	10.2	358
94	α-synuclein aggregation reduces nigral myocyte enhancer Factor-2D in idiopathic and experimental Parkinson's disease. Neurobiology of Disease, 2011, 41, 71-82.	4.4	36
95	Transfer of host-derived alpha synuclein to grafted dopaminergic neurons in rat. Neurobiology of Disease, 2011, 43, 552-557.	4.4	149
96	Properly scaled and targeted AAV2-NRTN (neurturin) to the substantia nigra is safe, effective and causes no weight loss: Support for nigral targeting in Parkinson's disease. Neurobiology of Disease, 2011, 44, 38-52.	4.4	56
97	Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature, 2011, 480, 547-551.	27.8	1,603
98	Gene transfer provides a practical means for safe, long-term, targeted delivery of biologically active neurotrophic factor proteins for neurodegenerative diseases. Drug Delivery and Translational Research, 2011, 1, 361-382.	5.8	26
99	Bioactivity of AAV2â€neurturin gene therapy (CEREâ€120): Differences between Parkinson's disease and nonhuman primate brains. Movement Disorders, 2011, 26, 27-36.	3.9	144
100	Cell Transplantation and Gene Therapy in Parkinson's Disease. Mount Sinai Journal of Medicine, 2011, 78, 126-158.	1.9	43
101	Increased Intestinal Permeability Correlates with Sigmoid Mucosa alpha-Synuclein Staining and Endotoxin Exposure Markers in Early Parkinson's Disease. PLoS ONE, 2011, 6, e28032.	2.5	689
102	Injectable Hydrogels Providing Sustained Delivery of Vascular Endothelial Growth Factor are Neuroprotective in a Rat Model of Huntington's Disease. Neurotoxicity Research, 2010, 17, 66-74.	2.7	30
103	Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial. Lancet Neurology, The, 2010, 9, 1164-1172.	10.2	589
104	Gene therapy for Parkinson's disease. Movement Disorders, 2010, 25, S161-73.	3.9	42
105	Differential vulnerability of neurons in Huntington's disease: the role of cell typeâ€specific features. Journal of Neurochemistry, 2010, 113, 1073-1091.	3.9	130
106	Missing pieces in the Parkinson's disease puzzle. Nature Medicine, 2010, 16, 653-661.	30.7	621
107	Reply to: "Being too inclusive about synuclein inclusions― Nature Medicine, 2010, 16, 961-961.	30.7	0
108	Lewy body pathology in fetal grafts. Annals of the New York Academy of Sciences, 2010, 1184, 55-67.	3.8	87

7

#	Article	IF	CITATIONS
109	βâ€Secretaseâ€1 elevation in aged monkey and Alzheimer's disease human cerebral cortex occurs around the vasculature in partnership with multisystem axon terminal pathogenesis and βâ€amyloid accumulation. European Journal of Neuroscience, 2010, 32, 1223-1238.	2.6	56
110	Differential Transduction Following Basal Ganglia Administration of Distinct Pseudotyped AAV Capsid Serotypes in Nonhuman Primates. Molecular Therapy, 2010, 18, 579-587.	8.2	82
111	Neurotrophic factor therapy for Parkinson's disease. Progress in Brain Research, 2010, 184, 237-264.	1.4	138
112	Age-related changes in glial cells of dopamine midbrain subregions in rhesus monkeys. Neurobiology of Aging, 2010, 31, 937-952.	3.1	60
113	Long-term gonadal hormone treatment and endogenous neurogenesis in the dentate gyrus of the adult female monkey. Experimental Neurology, 2010, 224, 252-257.	4.1	17
114	Doublecortin-expressing cells persist in the associate cerebral cortex and amygdala in aged nonhuman primates. Frontiers in Neuroanatomy, 2009, 3, 17.	1.7	82
115	Lewy body pathology in long-term fetal nigral transplants: is parkinson's disease transmitted from one neural system to another?. Neuropsychopharmacology, 2009, 34, 254-254.	5.4	40
116	Animal Rights Terrorists: What Every Neuroscientist Should Know. Journal of Neuroscience, 2009, 29, 11419-11420.	3.6	3
117	Intrastriatal CERE-120 (AAV-Neurturin) protects striatal and cortical neurons and delays motor deficits in a transgenic mouse model of Huntington's disease. Neurobiology of Disease, 2009, 34, 40-50.	4.4	53
118	Alterations in lysosomal and proteasomal markers in Parkinson's disease: Relationship to alpha-synuclein inclusions. Neurobiology of Disease, 2009, 35, 385-398.	4.4	360
119	Future of cell and gene therapies for Parkinson's disease. Annals of Neurology, 2009, 64, S122-S138.	5.3	31
120	Dopaminergic transplantation for parkinson's disease: Current status and future prospects. Annals of Neurology, 2009, 66, 591-596.	5.3	80
121	Modeling Parkinson's disease. Annals of Neurology, 2009, 66, 432-436.	5.3	34
122	Celebrating neural repair. Journal of Comparative Neurology, 2009, 515, 1-3.	1.6	1
123	Special issue on neural repair. Journal of Comparative Neurology, 2009, 515, spc1-spc1.	1.6	0
124	Special issue on neural repair. Journal of Comparative Neurology, 2009, 515, spc1-spc1.	1.6	0
125	Clinical pattern and risk factors for dyskinesias following fetal nigral transplantation in Parkinson's disease: A double blind videoâ€based analysis. Movement Disorders, 2009, 24, 336-343.	3.9	84
126	Doublecortin expression in adult cat and primate cerebral cortex relates to immature neurons that develop into GABAergic subgroups. Experimental Neurology, 2009, 216, 342-356.	4.1	98

#	Article	IF	CITATIONS
127	Trophic factors therapy in Parkinson's disease. Progress in Brain Research, 2009, 175, 201-216.	1.4	64
128	Propagation of host disease to grafted neurons: Accumulating evidence. Experimental Neurology, 2009, 220, 224-225.	4.1	22
129	Decreased α-synuclein expression in the aging mouse substantia nigra. Experimental Neurology, 2009, 220, 359-365.	4.1	39
130	EXPRESSION, BIOACTIVITY, AND SAFETY 1 YEAR AFTER ADENO-ASSOCIATED VIRAL VECTOR TYPE 2–MEDIATED DELIVERY OF NEURTURIN TO THE MONKEY NIGROSTRIATAL SYSTEM SUPPORT CERE-120 FOR PARKINSON'S DISEASE. Neurosurgery, 2009, 64, 602-613.	1.1	75
131	Transplanted dopaminergic neurons develop PD pathologic changes: A second case report. Movement Disorders, 2008, 23, 2303-2306.	3.9	247
132	Age and regionâ€specific responses of microglia, but not astrocytes, suggest a role in selective vulnerability of dopamine neurons after 1â€methylâ€4â€phenylâ€1,2,3,6â€ŧetrahydropyridine exposure in monke Glia, 2008, 56, 1199-1214.	2y 4. 9	57
133	β-secretase-1 (BACE1) expression in cerebral neocortex shows a modular distribution pattern: Inverse correlation with endogenous neuronal activity. Cell Biology International, 2008, 32, S10-S11.	3.0	0
134	Lewy body–like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nature Medicine, 2008, 14, 504-506.	30.7	1,472
135	Regulatable promoters and gene therapy for Parkinson's disease: Is the only thing to fear, fear itself?. Experimental Neurology, 2008, 209, 34-40.	4.1	29
136	Transgene Expression, Bioactivity, and Safety of CERE-120 (AAV2-Neurturin) Following Delivery to the Monkey Striatum. Molecular Therapy, 2008, 16, 1737-1744.	8.2	68
137	The use of aged monkeys to study pd: important roles in pathogenesis and experimental therapeutics. , 2008, , 77-85.		1
138	GENE AND CELLULAR TRANSPLANTATION THERAPIES FOR HUNTINGTON'S DISEASE. , 2008, , 267-294.		0
139	Introduction to the special ASNTR issue. Cell Transplantation, 2008, 17, 361-2.	2.5	0
140	Animal Models of Huntington's Disease. ILAR Journal, 2007, 48, 356-373.	1.8	185
141	Selective inhibition of NF-κB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18754-18759.	7.1	391
142	Huntington's Disease: Pathological Mechanisms and Therapeutic Strategies. Cell Transplantation, 2007, 16, 301-312.	2.5	54
143	Issues regarding gene therapy products for Parkinson's disease: The development of CERE-120 (AAV-NTN) as one reference point. Parkinsonism and Related Disorders, 2007, 13, S469-S477.	2.2	29
144	Gene therapy approaches for the treatment of Parkinson's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 84, 291-304.	1.8	9

#	ARTICLE	IF	CITATIONS
145	Age-related accumulation of Marinesco bodies and lipofuscin in rhesus monkey midbrain dopamine neurons: Relevance to selective neuronal vulnerability. Journal of Comparative Neurology, 2007, 502, 683-700.	1.6	70
146	Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. Movement Disorders, 2007, 22, 1124-1132.	3.9	126
147	Role of heparin binding growth factors in nigrostriatal dopamine system development and Parkinson's disease. Brain Research, 2007, 1147, 77-88.	2.2	71
148	Age-associated increases of α-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: Is this the target for Parkinson's disease?. Neurobiology of Disease, 2007, 25, 134-149.	4.4	362
149	Aging-related changes in the nigrostriatal dopamine system and the response to MPTP in nonhuman primates: Diminished compensatory mechanisms as a prelude to parkinsonism. Neurobiology of Disease, 2007, 26, 56-65.	4.4	150
150	Neurturin gene therapy improves motor function and prevents death of striatal neurons in a 3-nitropropionic acid rat model of Huntington's disease. Neurobiology of Disease, 2007, 26, 375-384.	4.4	36
151	AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: Long-term efficacy and tolerability of CERE-120 for Parkinson's disease. Neurobiology of Disease, 2007, 27, 67-76.	4.4	134
152	RET expression does not change with age in the substantia nigra pars compacta of rhesus monkeys. Neurobiology of Aging, 2006, 27, 857-861.	3.1	21
153	Neural Repair Strategies for Parkinson's Disease: Insights from Primate Models. Cell Transplantation, 2006, 15, 251-265.	2.5	49
154	Focal not widespread grafts induce novel dyskinetic behavior in parkinsonian rats. Neurobiology of Disease, 2006, 21, 165-180.	4.4	93
155	Extensive neuroprotection by choroid plexus transplants in excitotoxin lesioned monkeys. Neurobiology of Disease, 2006, 23, 471-480.	4.4	89
156	Nurr1 in Parkinson's disease and related disorders. Journal of Comparative Neurology, 2006, 494, 495-514.	1.6	190
157	Substantia nigra tangles are related to gait impairment in older persons. Annals of Neurology, 2006, 59, 166-173.	5.3	164
158	Failure of proteasome inhibitor administration to provide a model of Parkinson's disease in rats and monkeys. Annals of Neurology, 2006, 60, 264-268.	5.3	128
159	Proteasome inhibition and Parkinson's disease modeling. Annals of Neurology, 2006, 60, 260-264.	5.3	138
160	Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Annals of Neurology, 2006, 60, 706-715.	5.3	235
161	Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9345-9350.	7.1	94
162	Gene transfer of trophic factors and stem cell grafting as treatments for Parkinson's disease. Neurology, 2006, 66, S89-103.	1.1	54

#	Article	IF	CITATIONS
163	RNA amplification of bromodeoxyuridine labeled newborn neurons in the monkey hippocampus. Journal of Neuroscience Methods, 2005, 144, 197-201.	2.5	2
164	A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nature Medicine, 2005, 11, 551-555.	30.7	979
165	Striatal trophic factor activity in aging monkeys with unilateral MPTP-induced parkinsonism. Experimental Neurology, 2005, 191, S60-S67.	4.1	72
166	Early changes in Huntington's disease patient brains involve alterations in cytoskeletal and synaptic elements. Journal of Neurocytology, 2004, 33, 517-533.	1.5	122
167	Effects of estrogen replacement therapy on cholinergic basal forebrain neurons and cortical cholinergic innervation in young and aged ovariectomized rhesus monkeys. Journal of Comparative Neurology, 2004, 472, 193-207.	1.6	34
168	Human neural stem cell transplants improve motor function in a rat model of Huntington's disease. Journal of Comparative Neurology, 2004, 475, 211-219.	1.6	232
169	Knockout of p75 ^{NTR} Does Not Alter the Viability of Striatal Neurons Following a Metabolic or Excitotoxic Injury. Journal of Molecular Neuroscience, 2003, 20, 93-102.	2.3	2
170	Prenatal 3,4-methylenedioxymethamphetamine (ecstasy) alters exploratory behavior, reduces monoamine metabolism, and increases forebrain tyrosine hydroxylase fiber density of juvenile rats. Neurotoxicology and Teratology, 2003, 25, 509-517.	2.4	51
171	GFAP knockout mice have increased levels of GDNF that protect striatal neurons from metabolic and excitotoxic insults. Journal of Comparative Neurology, 2003, 461, 307-316.	1.6	48
172	Estrogen increases the number of spinophilinâ€immunoreactive spines in the hippocampus of young and aged female rhesus monkeys. Journal of Comparative Neurology, 2003, 465, 540-550.	1.6	187
173	In vivo gene delivery of glial cell line-derived neurotrophic factor for Parkinson's disease. Annals of Neurology, 2003, 53, S120-S134.	5.3	105
174	A doubleâ€blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Annals of Neurology, 2003, 54, 403-414.	5.3	1,450
175	The role of α-synuclein in Parkinson's disease: insights from animal models. Nature Reviews Neuroscience, 2003, 4, 727-738.	10.2	317
176	Structural and functional neuroprotection in a rat model of Huntington's disease by viral gene transfer of GDNF. Experimental Neurology, 2003, 181, 213-223.	4.1	84
177	Primate models of Parkinson's disease. Experimental Neurology, 2003, 183, 258-262.	4.1	28
178	Chronic ischemic stroke model in cynomolgus monkeys: Behavioral, neuroimaging and anatomical study. Neurological Research, 2003, 25, 68-78.	1.3	68
179	Etiology of Parkinson's disease: Genetics and environment revisited. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13972-13974.	7.1	84
180	Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Annals of Neurology, 2002, 51, 145-155.	5.3	639

JEFFREY H KORDOWER

#	Article	IF	CITATIONS
181	Excitotoxic and metabolic damage to the rodent striatum: Role of the P75 neurotrophin receptor and glial progenitors. Journal of Comparative Neurology, 2002, 444, 291-305.	1.6	30
182	Loss of basal forebrain P75 ^{NTR} immunoreactivity in subjects with mild cognitive impairment and Alzheimer's disease. Journal of Comparative Neurology, 2002, 443, 136-153.	1.6	195
183	Age-related decreases in Nurr1 immunoreactivity in the human substantia nigra. Journal of Comparative Neurology, 2002, 450, 203-214.	1.6	187
184	Lentivirally Delivered Glial Cell Line-Derived Neurotrophic Factor Increases the Number of Striatal Dopaminergic Neurons in Primate Models of Nigrostriatal Degeneration. Journal of Neuroscience, 2002, 22, 4942-4954.	3.6	187
185	Viral vector-mediated gene therapy for Parkinson's disease. Clinical Neuroscience Research, 2001, 1, 496-506.	0.8	8
186	Down-regulation of trkA mRNA within nucleus basalis neurons in individuals with mild cognitive impairment and Alzheimer's disease. Journal of Comparative Neurology, 2001, 437, 296-307.	1.6	65
187	Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Annals of Neurology, 2001, 49, 202-213.	5.3	397
188	Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Annals of Neurology, 2001, 49, 202-213.	5.3	6
189	Chapter 15 Neuropathology of fetal nigra transplants for Parkinson's disease. Progress in Brain Research, 2000, 127, 333-344.	1.4	16
190	Age-related decreases in GTP-cyclohydrolase-I immunoreactive neurons in the monkey and human substantia nigra. Journal of Comparative Neurology, 2000, 426, 534-548.	1.6	30
191	B2 bradykinin receptor immunoreactivity in rat brain. Journal of Comparative Neurology, 2000, 427, 1-18.	1.6	72
192	Loss of nucleus basalis neurons containing trkA immunoreactivity in individuals with mild cognitive impairment and early Alzheimer's disease. Journal of Comparative Neurology, 2000, 427, 19-30.	1.6	225
193	Making the counts count: the stereology revolution. Journal of Chemical Neuroanatomy, 2000, 20, 1-2.	2.1	10
194	Neurodegeneration Prevented by Lentiviral Vector Delivery of GDNF in Primate Models of Parkinson's Disease. Science, 2000, 290, 767-773.	12.6	1,201
195	Delivery of therapeutic molecules into the CNS. Progress in Brain Research, 2000, 128, 323-332.	1.4	17
196	B2 bradykinin receptor immunoreactivity in rat brain. Journal of Comparative Neurology, 2000, 427, 1-18.	1.6	1
197	Long-term Evaluation of Bilateral Fetal Nigral Transplantation in Parkinson Disease. Archives of Neurology, 1999, 56, 179.	4.5	347
198	Estrogen receptor immunoreactivity within subregions of the rat forebrain: neuronal distribution and association with perikarya containing choline acetyltransferase. Brain Research, 1999, 849, 253-274.	2.2	96

#	Article	IF	CITATIONS
199	Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson's disease. Annals of Neurology, 1999, 46, 419-424.	5.3	386
200	The first miracle in neurodegenerative disease: The discovery of oral levodopa. Brain Research Bulletin, 1999, 50, 377-378.	3.0	11
201	Lentiviral Gene Transfer to the Nonhuman Primate Brain. Experimental Neurology, 1999, 160, 1-16.	4.1	186
202	Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. Journal of Comparative Neurology, 1998, 401, 253-265.	1.6	267
203	Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson's disease. Movement Disorders, 1998, 13, 383-393.	3.9	271
204	Cellular Delivery of CNTF but not NT-4/5 Prevents Degeneration of Striatal Neurons in a Rodent Model of Huntington's Disease. Cell Transplantation, 1998, 7, 213-225.	2.5	35
205	Dopaminergic Transplants in Patients with Parkinson's Disease: Neuroanatomical Correlates of Clinical Recovery. Experimental Neurology, 1997, 144, 41-46.	4.1	96
206	Reduction in p140-TrkA Receptor Protein within the Nucleus Basalis and Cortex in Alzheimer's Disease. Experimental Neurology, 1997, 146, 91-103.	4.1	175
207	Fetal Grafting for Parkinson's Disease: Expression of Immune Markers in Two Patients with Functional Fetal Nigral Implants. Cell Transplantation, 1997, 6, 213-219.	2.5	107
208	Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington's disease. Nature, 1997, 386, 395-399.	27.8	310
209	Connections of the hippocampal formation in humans: II. The endfolial fiber pathway. Journal of Comparative Neurology, 1997, 385, 352-371.	1.6	45
210	Grafts of EGF-responsive neural stem cells derived from GFAP-hNGF transgenic mice: Trophic and tropic effects in a rodent model of Huntington's disease. , 1997, 387, 96-113.		96
211	Connections of the hippocampal formation in humans: II. The endfolial fiber pathway. Journal of Comparative Neurology, 1997, 385, 352-371.	1.6	1
212	Implants of Encapsulated Human CNTF-Producing Fibroblasts Prevent Behavioral Deficits and Striatal Degeneration in a Rodent Model of Huntington's Disease. Journal of Neuroscience, 1996, 16, 5168-5181.	3.6	204
213	Functional fetal nigral grafts in a patient with Parkinson's disease: Chemoanatomic, ultrastructural, and metabolic studies. , 1996, 370, 203-230.		286
214	Nerve growth factor in Alzheimer's disease: defective retrograde transport to nucleus basalis. NeuroReport, 1995, 6, 1063-1066.	1.2	206
215	Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson's disease. Annals of Neurology, 1995, 38, 379-388.	5.3	421
216	Neural Transplantation into the CNS: Selected Articles from the First Asnt Meeting. Cell Transplantation, 1995, 4, 1-1.	2.5	13

#	Article	lF	CITATIONS
217	Neuropathological Evidence of Graft Survival and Striatal Reinnervation after the Transplantation of Fetal Mesencephalic Tissue in a Patient with Parkinson's Disease. New England Journal of Medicine, 1995, 332, 1118-1124.	27.0	868
218	Nerve growth factor-like immunoreactive profiles in the primate basal forebrain and hippocampal formation. Journal of Comparative Neurology, 1994, 341, 507-519.	1.6	59
219	TRK-immunoreactivity in the monkey central nervous system: Forebrain. Journal of Comparative Neurology, 1994, 349, 20-35.	1.6	53
220	Implants of polymer-encapsulated human NGF-secreting cells in the nonhuman primate: Rescue and sprouting of degenerating cholinergic basal forebrain neurons. Journal of Comparative Neurology, 1994, 349, 148-164.	1.6	196
221	TrkAâ€immunoreactive profiles in the central nervous system: Colocalization with neurons containing p75 nerve growth factor receptor, choline acetyltransferase, and serotonin. Journal of Comparative Neurology, 1994, 350, 587-611.	1.6	321
222	NGF receptor (p75)-immunoreactivity in the developing primate basal ganglia. Journal of Comparative Neurology, 1993, 327, 359-375.	1.6	22
223	Galaninergic Innervation of the Cholinergic Vertical Limb of the Diagonal Band (Ch2) and Bed Nucleus of the Stria terminalis in Aging, Alzheimer's Disease and Down's Syndrome (Part 1 of 2). Dementia and Geriatric Cognitive Disorders, 1993, 4, 237-243.	1.5	65
224	NGF receptor (p75)-immunoreactivity within hypoglossal motor neurons following axotomy in monkeys. Restorative Neurology and Neuroscience, 1992, 4, 411-417.	0.7	6
225	p75 Nerve growth factor receptor immunoreactivity in the human brainstem and spinal cord. Brain Research, 1992, 589, 115-123.	2.2	30
226	Galanin immunoreactivity in the primate central nervous system. Journal of Comparative Neurology, 1992, 319, 479-500.	1.6	161
227	Nerve growth factor receptor immunoreactivity within the nucleus basalis (Ch4) in Parkinson's disease: reduced cell numbers and co-localization with cholinergic neurons. Brain Research, 1991, 539, 19-30.	2.2	49
228	Putative chromaffin cell survival and enhanced host-derived TH-Fiber innervation following a functional adrenal medulla autograft for Parkinson's disease. Annals of Neurology, 1991, 29, 405-412.	5.3	209
229	Neurogenesis of the magnocellular basal forebrain nuclei in the rhesus monkey. Journal of Comparative Neurology, 1990, 291, 637-653.	1.6	24
230	Galaninâ€ l ike immunoreactivity within the primate basal forebrain: Differential staining patterns between humans and monkeys. Journal of Comparative Neurology, 1990, 294, 281-292.	1.6	119
231	Response of the monkey cholinergic septohippocampal system to fornix transection: A histochemical and cytochemical analysis. Journal of Comparative Neurology, 1990, 298, 443-457.	1.6	27
232	Nerve growth factor receptor immunoreactive profiles in the normal, aged human basal forebrain: Colocalization with cholinergic neurons. Journal of Comparative Neurology, 1989, 285, 196-217.	1.6	242
233	Nerve growth factor receptor and choline acetyltransferase remain colocalized in the nucleus basalis (Ch4) of Alzheimer's patients. Neurobiology of Aging, 1989, 10, 67-74.	3.1	96
234	Loss of nerve growth factor receptor-containing neurons in Alzheimer's disease: A quantitative analysis across subregions of the basal forebrain. Experimental Neurology, 1989, 105, 221-232.	4.1	271

#	Article	IF	CITATIONS
235	Nerve growth factor receptor immunoreactivity in the nonhuman primate (Cebus apella): Distribution, morphology, and colocalization with cholinergic enzymes. Journal of Comparative Neurology, 1988, 277, 465-486.	1.6	183
236	Tyrosine hydroxylase-immunoreactive somata within the primate subfornical organ: species specificity. Brain Research, 1988, 461, 221-229.	2.2	16
237	Loss of nucleus basalis neurons containing trkA immunoreactivity in individuals with mild cognitive impairment and early Alzheimer's disease. , 0, .		1