Elisa I Garzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1737637/publications.pdf Version: 2024-02-01

FUSAL CARZO

#	Article	IF	CITATIONS
1	Excel Workbook for automatic parameter calculation of EPG data. Computers and Electronics in Agriculture, 2009, 67, 35-42.	7.7	208
2	A Plant Virus Manipulates the Behavior of Its Whitefly Vector to Enhance Its Transmission Efficiency and Spread. PLoS ONE, 2013, 8, e61543.	2.5	185
3	Location of resistance factors in the leaves of potato and wild tuber-bearing Solanum species to the aphid Myzus persicae. Entomologia Experimentalis Et Applicata, 2006, 121, 145-157.	1.4	171
4	Characterization of electrical penetration graphs of the Asian citrus psyllid, <i>Diaphorina citri</i> , in sweet orange seedlings. Entomologia Experimentalis Et Applicata, 2010, 134, 35-49.	1.4	169
5	A protein key to plant virus transmission at the tip of the insect vector stylet. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17959-17964.	7.1	162
6	A non-persistently transmitted-virus induces a pull–push strategy in its aphid vector to optimize transmission and spread. Virus Research, 2014, 186, 38-46.	2.2	108
7	Whitefly Resistance Traits Derived from the Wild Tomato <i>Solanum pimpinellifolium</i> Affect the Preference and Feeding Behavior of <i>Bemisia tabaci</i> and Reduce the Spread of <i>Tomato yellow leaf curl virus</i> . Phytopathology, 2011, 101, 1191-1201.	2.2	103
8	Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of <i>MyzusÂpersicae</i> . Entomologia Experimentalis Et Applicata, 2007, 125, 135-144.	1.4	97
9	A virus responds instantly to the presence of the vector on the host and forms transmission morphs. ELife, 2013, 2, e00183.	6.0	81
10	Feeding behavior ofAphis gossypii on resistant accessions of different melon genotypes (Cucumis) Tj ETQqO 0 0	rgBT/Ovei 1.2	rlock 10 Tf 5
11	Aphids secrete watery saliva into plant tissues from the onset of stylet penetration. Entomologia Experimentalis Et Applicata, 2011, 139, 145-153.	1.4	61
12	Stylet penetration of Cacopsylla pyri; an electrical penetration graph (EPG) study. Journal of Insect Physiology, 2011, 57, 1407-1419.	2.0	54
13	<i>Cucurbit aphid-borne yellows virus</i> (CABYV) modifies the alighting, settling and probing behaviour of its vector <i>Aphis gossypii</i> favouring its own spread. Annals of Applied Biology, 2016, 169, 284-297.	2.5	51
14	Morphological description of the mouthparts of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Arthropod Structure and Development, 2012, 41, 79-86.	1.4	46
15	Acylsucrose-Producing Tomato Plants Forces Bemisia tabaci to Shift Its Preferred Settling and Feeding Site. PLoS ONE, 2012, 7, e33064.	2.5	45
16	Pectin Methylesterases Modulate Plant Homogalacturonan Status in Defenses against the Aphid <i>Myzus persicae</i> . Plant Cell, 2019, 31, 1913-1929.	6.6	43

¹⁸Electrical penetration graph technique as a tool to monitor the early stages of aphid resistance to
insecticides. Pest Management Science, 2016, 72, 707-718.3.438

Elisa I Garzo

#	Article	IF	CITATIONS
19	New structure in cell puncture activities by aphid stylets: a dualâ€mode EPG study. Entomologia Experimentalis Et Applicata, 2010, 135, 193-207.	1.4	37
20	Circulating Virus Load Determines the Size of Bottlenecks in Viral Populations Progressing within a Host. PLoS Pathogens, 2012, 8, e1003009.	4.7	37
21	Tomato Yellow Leaf Curl Virus Benefits Population Growth of the Q Biotype of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Neotropical Entomology, 2014, 43, 385-392.	1.2	35
22	Feeding Behavior and Virus-transmission Ability of Insect Vectors Exposed to Systemic Insecticides. Plants, 2020, 9, 895.	3.5	32
23	Comparative analysis of <i>Solanum stoloniferum</i> responses to probing by the green peach aphid <i>Myzus persicae</i> and the potato aphid <i>Macrosiphum euphorbiae</i> . Insect Science, 2013, 20, 207-227.	3.0	30
24	Plant feeding by Nesidiocoris tenuis: Quantifying its behavioral and mechanical components. Biological Control, 2021, 152, 104402.	3.0	28
25	Stylet penetration activities of the whitefly Bemisia tabaci associated with inoculation of the crinivirus Tomato chlorosis virus. Journal of General Virology, 2017, 98, 1515-1520.	2.9	28
26	Ultrastructure of compatible and incompatible interactions in phloem sieve elements during the stylet penetration by cotton aphids in melon. Insect Science, 2018, 25, 631-642.	3.0	26
27	EPG combined with micro-CT and video recording reveals new insights on the feeding behavior of Philaenus spumarius. PLoS ONE, 2018, 13, e0199154.	2.5	26
28	Sulfoxaflor and Natural Pyrethrin with Piperonyl Butoxide Are Effective Alternatives to Neonicotinoids against Juveniles of Philaenus spumarius, the European Vector of Xylella fastidiosa. Insects, 2019, 10, 225.	2.2	23
29	High levels of arbuscular mycorrhizal fungus colonization on Medicago truncatula reduces plant suitability as a host for pea aphids (Acyrthosiphon pisum). Insect Science, 2020, 27, 99-112.	3.0	20
30	Preinfestations of tomato plants by whiteflies (Bemisia tabaci) or aphids (Macrosiphum euphorbiae) induce variable resistance or susceptibility responses. Bulletin of Entomological Research, 2009, 99, 183-191.	1.0	18
31	The phloem-pd: a distinctive brief sieve element stylet puncture prior to sieve element phase of aphid feeding behavior. Arthropod-Plant Interactions, 2020, 14, 67-78.	1.1	18
32	Feeding behavior in relation to spittlebug transmission of Xylella fastidiosa. Journal of Pest Science, 2020, 93, 1197-1213.	3.7	18
33	Feeding behavior, life history, and virus transmission ability of <i>Bemisia tabaci</i> Mediterranean species (Hemiptera: Aleyrodidae) under elevated CO ₂ . Insect Science, 2020, 27, 558-570.	3.0	16
34	New source of resistance to mosaic virus transmission by Aphis gossypii in melon. Euphytica, 2003, 133, 313-318.	1.2	15
35	Flight performance and the factors affecting the flight behaviour of Philaenus spumarius the main vector of Xylella fastidiosa in Europe. Scientific Reports, 2021, 11, 17608.	3.3	15
36	<i>Barley yellow dwarf virus</i> Can Be Inoculated During Brief Intracellular Punctures in Phloem Cells Before the Sieve Element Continuous Salivation Phase. Phytopathology, 2020, 110, 85-93.	2.2	13

Elisa I Garzo

#	Article	IF	CITATIONS
37	Aphid Resistance: An Overlooked Ecological Dimension of Nonstructural Carbohydrates in Cereals. Frontiers in Plant Science, 2020, 11, 937.	3.6	13
38	Supplementary UV radiation on eggplants indirectly deters Bemisia tabaci settlement without altering the predatory orientation of their biological control agents Nesidiocoris tenuis and Sphaerophoria rueppellii. Journal of Pest Science, 2019, 92, 1057-1070.	3.7	12
39	Resistance to <i>Cucurbit aphid-borne yellows virus</i> in Melon Accession TGR-1551. Phytopathology, 2015, 105, 1389-1396.	2.2	11
40	The role of plant labile carbohydrates and nitrogen on wheat-aphid relationsÂ. Scientific Reports, 2021, 11, 12529.	3.3	6
41	Effects of a Salicylic Acid Analog on Aphis gossypii and Its Predator Chrysoperla carnea on Melon Plants. Agronomy, 2020, 10, 1830.	3.0	5
42	Changes in melon plant phytochemistry impair Aphis gossypii growth and weight under elevated CO2. Scientific Reports, 2021, 11, 2186.	3.3	5
43	Artificial diet delivery system for <i>Philaenus spumarius</i> , the European vector of <i>Xylella fastidiosa</i> . Journal of Applied Entomology, 2019, 143, 882-892.	1.8	4
44	Indirect effect of elevated CO ₂ concentration on <i>Bemisia tabaci</i> MEAM1 feeding on <i>Bt</i> soybean plants. Journal of Applied Entomology, 2020, 144, 941-951.	1.8	4
45	Host plant preference of Trioza erytreae on lemon and bitter orange plants. Arthropod-Plant Interactions, 2021, 15, 887-896.	1.1	4
46	Probing behavior of Neophilaenus campestris on various plant species. Entomologia Experimentalis Et Applicata, 0, , .	1.4	1