List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1737621/publications.pdf Version: 2024-02-01

FEL CAO

#	Article	IF	CITATIONS
1	Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation. Applied Catalysis B: Environmental, 2012, 119-120, 308-320.	10.8	348
2	Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Applied Catalysis B: Environmental, 2013, 134-135, 349-358.	10.8	310
3	Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental, 2015, 165, 589-598.	10.8	307
4	Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review. Chemosphere, 2019, 218, 845-859.	4.2	299
5	Improved activity and significant SO2 tolerance of samarium modified CeO2-TiO2 catalyst for NO selective catalytic reduction with NH3. Applied Catalysis B: Environmental, 2019, 244, 671-683.	10.8	294
6	Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH ₃ . Catalysis Science and Technology, 2016, 6, 1248-1264.	2.1	293
7	Morphology and Crystalâ€Plane Effects of Nanoscale Ceria on the Activity of CuO/CeO ₂ for NO Reduction by CO. ChemCatChem, 2011, 3, 978-989.	1.8	255
8	Insights into the Sm/Zr co-doping effects on N2 selectivity and SO2 resistance of a MnOx-TiO2 catalyst for the NH3-SCR reaction. Chemical Engineering Journal, 2018, 347, 27-40.	6.6	233
9	Synergistic effects of Cu2O-decorated CeO2 on photocatalytic CO2 reduction: Surface Lewis acid/base and oxygen defect. Applied Catalysis B: Environmental, 2019, 254, 580-586.	10.8	226
10	Correlation between the physicochemical properties and catalytic performances of CexSn1–xO2 mixed oxides for NO reduction by CO. Applied Catalysis B: Environmental, 2014, 144, 152-165.	10.8	224
11	Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature. Applied Catalysis B: Environmental, 2014, 150-151, 315-329.	10.8	221
12	Enhanced activity of visible-light photocatalytic H 2 evolution of sulfur-doped g-C 3 N 4 photocatalyst via nanoparticle metal Ni as cocatalyst. Applied Catalysis B: Environmental, 2018, 235, 66-74.	10.8	218
13	Monodispersed Mesoporous Silica Nanoparticles with Very Large Pores for Enhanced Adsorption and Release of DNA. Journal of Physical Chemistry B, 2009, 113, 1796-1804.	1.2	192
14	Universal Surfactantâ€Free Strategy for Selfâ€Standing 3D Tremellaâ€Like Pd–M (M = Ag, Pb, and Au) Nanosheets for Superior Alcohols Electrocatalysis. Advanced Functional Materials, 2020, 30, 2000255.	7.8	191
15	Effect of metal ions doping (M = Ti4+, Sn4+) on the catalytic performance of MnO /CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Applied Catalysis A: General, 2015, 495, 206-216.	2.2	189
16	Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer–Tropsch synthesis. Nature Communications, 2018, 9, 3250.	5.8	186
17	Correlation of structural characteristics with catalytic performance of CuO/CexZr1â^'xO2 catalysts for NO reduction by CO. Journal of Catalysis, 2010, 275, 45-60.	3.1	185
18	Advanced MnO _{<i>x</i>} /TiO ₂ Catalyst with Preferentially Exposed Anatase {001} Facet for Low-Temperature SCR of NO. ACS Catalysis, 2016, 6, 5807-5815.	5.5	181

#	Article	IF	CITATIONS
19	Crystal-plane-dependent metal oxide-support interaction in CeO2/g-C3N4 for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 238, 111-118.	10.8	178
20	Investigation of the physicochemical properties and catalytic activities of Ce _{0.67} M _{0.33} O ₂ (M = Zr ⁴⁺ , Ti ⁴⁺ ,) Tj ETQq0 (0 0 rgBT /Ov	verlock 10 Tf : 165
	688-698.		
21	Selective catalytic reduction of NO x by NH 3 over CeO 2 supported on TiO 2 : Comparison of anatase, brookite, and rutile. Applied Catalysis B: Environmental, 2017, 208, 82-93.	10.8	165
22	Enhanced visible light photocatalytic hydrogen evolution via cubic CeO2 hybridized g-C3N4 composite. Applied Catalysis B: Environmental, 2017, 218, 51-59.	10.8	165
23	Engineering the Cu2O–reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light. Applied Catalysis B: Environmental, 2016, 181, 495-503.	10.8	163
24	Ultra-low loading of copper modified TiO2/CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental, 2017, 207, 366-375.	10.8	156
25	Enhancing the deNO performance of MnO /CeO2-ZrO2 nanorod catalyst for low-temperature NH3-SCR by TiO2 modification. Chemical Engineering Journal, 2019, 369, 46-56.	6.6	153
26	<i>In Situ</i> Loading Transition Metal Oxide Clusters on TiO ₂ Nanosheets As Co-catalysts for Exceptional High Photoactivity. ACS Catalysis, 2013, 3, 2052-2061.	5.5	151
27	NO reduction by CO over CuO–CeO2 catalysts: effect of preparation methods. Catalysis Science and Technology, 2013, 3, 1355.	2.1	148
28	Facile ball-milling synthesis of CeO2/g-C3N4 Z-scheme heterojunction for synergistic adsorption and photodegradation of methylene blue: Characteristics, kinetics, models, and mechanisms. Chemical Engineering Journal, 2021, 420, 127719.	6.6	148
29	Chemically activated hydrochar as an effective adsorbent for volatile organic compounds (VOCs). Chemosphere, 2019, 218, 680-686.	4.2	145
30	Interfacial coupling effects in g-C3N4/SrTiO3 nanocomposites with enhanced H2 evolution under visible light irradiation. Applied Catalysis B: Environmental, 2019, 247, 1-9.	10.8	139
31	A comparative study of different doped metal cations on the reduction, adsorption and activity of CuO/Ce0.67M0.33O2 (M=Zr4+, Sn4+, Ti4+) catalysts for NO+CO reaction. Applied Catalysis B: Environmental, 2013, 130-131, 293-304.	10.8	137
32	Universal strategies to multi-dimensional noble-metal-based catalysts for electrocatalysis. Coordination Chemistry Reviews, 2021, 436, 213825.	9.5	136
33	Acid-Resistant Catalysis without Use of Noble Metals: Carbon Nitride with Underlying Nickel. ACS Catalysis, 2014, 4, 2536-2543.	5.5	135
34	Influence of different supports on the physicochemical properties and denitration performance of the supported Mn-based catalysts for NH3-SCR at low temperature. Applied Surface Science, 2017, 402, 208-217.	3.1	129
35	Dispersion, reduction and catalytic performance of CuO supported on ZrO2-doped TiO2 for NO removal by CO. Applied Catalysis B: Environmental, 2011, 103, 206-220.	10.8	128
36	Sulfated Temperature Effects on the Catalytic Activity of CeO ₂ in NH ₃ -Selective Catalytic Reduction Conditions. Journal of Physical Chemistry C, 2015, 119, 1155-1163.	1.5	128

#	Article	IF	CITATIONS
37	Crystal-Plane Effects on the Catalytic Properties of Au/TiO ₂ . ACS Catalysis, 2013, 3, 2768-2775.	5.5	120
38	Conquering ammonium bisulfate poison over low-temperature NH3-SCR catalysts: A critical review. Applied Catalysis B: Environmental, 2021, 297, 120388.	10.8	120
39	Shape-control of one-dimensional PtNi nanostructures as efficient electrocatalysts for alcohol electrooxidation. Nanoscale, 2019, 11, 4831-4836.	2.8	119
40	Influence of CO pretreatment on the activities of CuO/γ-Al2O3 catalysts in CO+O2 reaction. Applied Catalysis B: Environmental, 2008, 79, 254-261.	10.8	118
41	Influence of preparation methods on the physicochemical properties and catalytic performance of MnO -CeO2 catalysts for NH3-SCR at low temperature. Chinese Journal of Catalysis, 2017, 38, 146-159.	6.9	114
42	In situ FT-infrared investigation of CO or/and NO interaction with CuO/Ce0.67Zr0.33O2 catalysts. Applied Catalysis B: Environmental, 2009, 90, 578-586.	10.8	112
43	Influence of supports on the activities of copper oxide species in the low-temperature NO+CO reaction. Applied Catalysis B: Environmental, 2001, 31, 61-69.	10.8	110
44	The Remarkable Enhancement of COâ€Pretreated CuOMn ₂ O ₃ /γâ€Al ₂ O ₃ Supported Catalyst for the Reduction of NO with CO: The Formation of Surface Synergetic Oxygen Vacancy. Chemistry - A European Journal, 2011, 17, 5668-5679.	1.7	109
45	Insight into the SO2 resistance mechanism on γ-Fe2O3 catalyst in NH3-SCR reaction: A collaborated experimental and DFT study. Applied Catalysis B: Environmental, 2021, 281, 119544.	10.8	107
46	In situ loading of ultra-small Cu2O particles on TiO2 nanosheets to enhance the visible-light photoactivity. Nanoscale, 2012, 4, 6351.	2.8	106
47	Efficient fabrication of active CuO-CeO2/SBA-15 catalysts for preferential oxidation of CO by solid state impregnation. Applied Catalysis B: Environmental, 2014, 146, 201-212.	10.8	105
48	Promotional effect of doping SnO ₂ into TiO ₂ over a CeO ₂ /TiO ₂ catalyst for selective catalytic reduction of NO by NH ₃ . Catalysis Science and Technology, 2015, 5, 2188-2196.	2.1	103
49	Acid pretreatment effect on the physicochemical property and catalytic performance of CeO 2 for NH 3 -SCR. Applied Catalysis A: General, 2017, 542, 282-288.	2.2	100
50	Mesoporous NiO–CeO2 catalysts for CO oxidation: Nickel content effect and mechanism aspect. Applied Catalysis A: General, 2015, 494, 77-86.	2.2	99
51	Influence of CuO loading on dispersion and reduction behavior of CuO/TiO2 (anatase) system. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1905-1909.	1.7	97
52	A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. Journal of Catalysis, 2017, 350, 218-225.	3.1	95
53	Anion-Assisted Synthesis of TiO ₂ Nanocrystals with Tunable Crystal Forms and Crystal Facets and Their Photocatalytic Redox Activities in Organic Reactions. Journal of Physical Chemistry C, 2013, 117, 18578-18587.	1.5	92
54	Mn-Modified CuO, CuFe ₂ O ₄ , and γ-Fe ₂ O ₃ Three-Phase Strong Synergistic Coexistence Catalyst System for NO Reduction by CO with a Wider Active Window. ACS Applied Materials & Interfaces, 2018, 10, 40509-40522.	4.0	92

#	Article	IF	CITATIONS
55	Investigation of the NO removal by CO on CuO–CoOx binary metal oxides supported on Ce0.67Zr0.33O2. Applied Catalysis B: Environmental, 2009, 90, 105-114.	10.8	91
56	Study of the Properties of CuO/VO _{<i>x</i>} /Ti _{0.5} Sn _{0.5} O ₂ Catalysts and Their Activities in NO + CO Reaction. ACS Catalysis, 2011, 1, 468-480.	5.5	91
57	Enhanced low-temperature NH 3 -SCR performance of MnO x /CeO 2 catalysts by optimal solvent effect. Applied Surface Science, 2017, 420, 407-415.	3.1	91
58	Activities of supported copper oxide catalysts in the NO+CO reaction at low temperatures. Journal of Molecular Catalysis A, 2000, 162, 307-316.	4.8	90
59	Studies on surface structure of MxOy/MoO3/CeO2 system (M=Ni, Cu, Fe) and its influence on SCR of NO by NH3. Applied Catalysis B: Environmental, 2010, 95, 144-152.	10.8	90
60	Synthesis of sandwich-like TiO2@C composite hollow spheres with high rate capability and stability for lithium-ion batteries. Journal of Power Sources, 2013, 221, 141-148.	4.0	90
61	Morphology and Crystal-Plane Effects of CeO ₂ on TiO ₂ /CeO ₂ Catalysts during NH ₃ -SCR Reaction. Industrial & Engineering Chemistry Research, 2018, 57, 12407-12419.	1.8	90
62	Effect of CO-pretreatment on the CuO–V ₂ O ₅ /γ-Al ₂ O ₃ catalyst for NO reduction by CO. Catalysis Science and Technology, 2014, 4, 4416-4425.	2.1	88
63	Engineering the NiO/CeO ₂ interface to enhance the catalytic performance for CO oxidation. RSC Advances, 2015, 5, 98335-98343.	1.7	87
64	Recent advances in one-dimensional noble-metal-based catalysts with multiple structures for efficient fuel-cell electrocatalysis. Coordination Chemistry Reviews, 2022, 450, 214244.	9.5	84
65	Synthesis, characterization and catalytic performance of FeMnTiOx mixed oxides catalyst prepared by a CTAB-assisted process for mid-low temperature NH3-SCR. Applied Catalysis A: General, 2015, 505, 235-242.	2.2	82
66	Morphology and nanosize effects of ceria from different precursors on the activity for NO reduction. Catalysis Today, 2011, 175, 48-54.	2.2	81
67	Engineering the TiO ₂ –Graphene Interface to Enhance Photocatalytic H ₂ Production. ChemSusChem, 2014, 7, 618-626.	3.6	81
68	Pore Size Expansion Accelerates Ammonium Bisulfate Decomposition for Improved Sulfur Resistance in Low-Temperature NH ₃ -SCR. ACS Applied Materials & Interfaces, 2019, 11, 4900-4907.	4.0	81
69	Synergistic adsorption-photocatalysis processes of graphitic carbon nitrate (g-C3N4) for contaminant removal: Kinetics, models, and mechanisms. Chemical Engineering Journal, 2019, 375, 122019.	6.6	80
70	Crystal-Plane Effects of CeO ₂ {110} and CeO ₂ {100} on Photocatalytic CO ₂ Reduction: Synergistic Interactions of Oxygen Defects and Hydroxyl Groups. ACS Sustainable Chemistry and Engineering, 2020, 8, 14397-14406.	3.2	80
71	The states of vanadium species in V-SBA-15 synthesized under different pH values. Microporous and Mesoporous Materials, 2008, 110, 508-516.	2.2	79
72	Facile Ball-Milling Synthesis of CuO/Biochar Nanocomposites for Efficient Removal of Reactive Red 120. ACS Omega, 2020, 5, 5748-5755.	1.6	79

#	Article	IF	CITATIONS
73	Precursor-mediated size tuning of monodisperse PtRh nanocubes as efficient electrocatalysts for ethylene glycol oxidation. Journal of Materials Chemistry A, 2019, 7, 7891-7896.	5.2	78
74	Synthesis, characterization and catalytic performance for phenol hydroxylation of Fe-MCM41 with high iron content. Microporous and Mesoporous Materials, 2008, 113, 163-170.	2.2	77
75	Influence of molar ratio and calcination temperature on the properties of Ti Sn1â^O2 supporting copper oxide for CO oxidation. Applied Catalysis B: Environmental, 2016, 180, 451-462.	10.8	77
76	Synergistic effect between undercoordinated platinum atoms and defective nickel hydroxide on enhanced hydrogen evolution reaction in alkaline solution. Nano Energy, 2018, 48, 590-599.	8.2	76
77	Controllable Synthesis of Pure-Phase Rare-Earth Orthoferrites Hollow Spheres with a Porous Shell and Their Catalytic Performance for the CO + NO Reaction. Chemistry of Materials, 2010, 22, 4879-4889.	3.2	75
78	Self-template construction of Sub-24â€⁻nmâ€⁻Pd Ag hollow nanodendrites as highly efficient electrocatalysts for ethylene glycol oxidation. Journal of Power Sources, 2019, 418, 186-192.	4.0	75
79	Effect of Ti4+ and Sn4+ co-incorporation on the catalytic performance of CeO2-MnO catalyst for low temperature NH3-SCR. Applied Surface Science, 2019, 476, 283-292.	3.1	75
80	Efficient fabrication and photocatalytic properties of TiO2 hollow spheres. Catalysis Communications, 2009, 10, 650-654.	1.6	72
81	Textural, structural, and morphological characterizations and catalytic activity of nanosized CeO2–MOx (M=Mg2+, Al3+, Si4+) mixed oxides for CO oxidation. Journal of Colloid and Interface Science, 2011, 354, 341-352.	5.0	72
82	Fe-Mn/Al 2 O 3 catalysts for low temperature selective catalytic reduction of NO with NH 3. Chinese Journal of Catalysis, 2016, 37, 1314-1323.	6.9	72
83	Gas phase sulfation of ceria-zirconia solid solutions for generating highly efficient and SO2 resistant NH3-SCR catalysts for NO removal. Journal of Hazardous Materials, 2020, 388, 121729.	6.5	72
84	Synthesis and characterization of self-assembling (NH4)0.5V2O5 nanowires. Journal of Materials Chemistry, 2004, 14, 901.	6.7	70
85	Improved low temperature NH ₃ -SCR performance of FeMnTiO _x mixed oxide with CTAB-assisted synthesis. Chemical Communications, 2015, 51, 3470-3473.	2.2	69
86	A review of the role and mechanism of surfactants in the morphology control of metal nanoparticles. Nanoscale, 2021, 13, 3895-3910.	2.8	69
87	Investigation of surface synergetic oxygen vacancy in CuO–CoO binary metal oxides supported on γ-Al2O3 for NO removal by CO. Journal of Colloid and Interface Science, 2013, 390, 158-169.	5.0	67
88	Comprehensive understanding of the superior performance of Sm-modified Fe2O3 catalysts with regard to NO conversion and H2O/SO2 resistance in the NH3-SCR reaction. Chinese Journal of Catalysis, 2021, 42, 417-430.	6.9	67
89	Ce–Si Mixed Oxide: A High Sulfur Resistant Catalyst in the NH ₃ –SCR Reaction through the Mechanism-Enhanced Process. Environmental Science & Technology, 2021, 55, 4017-4026.	4.6	66
90	Influence of impregnation times on the dispersion of CuO on anatase. Journal of Molecular Catalysis A, 2006, 243, 24-30.	4.8	65

#	Article	IF	CITATIONS
91	Crystal-plane effects on surface and catalytic properties of Cu2O nanocrystals for NO reduction by CO. Applied Catalysis A: General, 2015, 505, 334-343.	2.2	65
92	Construction of Fe2O3 loaded and mesopore confined thin-layer titania catalyst for efficient NH3-SCR of NOx with enhanced H2O/SO2 tolerance. Applied Catalysis B: Environmental, 2021, 287, 119982.	10.8	64
93	Synthesis, characterization, and catalytic performance of copper-containing SBA-15 in the phenol hydroxylation. Journal of Colloid and Interface Science, 2012, 380, 16-24.	5.0	63
94	Preparation and photoluminescence of yttrium hydroxide and yttrium oxide doped with europium nanowires. Journal of Crystal Growth, 2005, 277, 643-649.	0.7	61
95	Effect of cobalt precursors on the dispersion, reduction, and CO oxidation of CoO /γ-Al2O3 catalysts calcined in N2. Journal of Colloid and Interface Science, 2011, 355, 464-471.	5.0	61
96	Activating low-temperature NH3-SCR catalyst by breaking the strong interface between acid and redox sites: A case of model Ce2(SO4)3-CeO2 study. Journal of Catalysis, 2021, 399, 212-223.	3.1	61
97	Influence of CeO ₂ modification on the properties of Fe ₂ O ₃ –Ti _{0.5} Sn _{0.5} O ₂ catalyst for NO reduction by CO. Catalysis Science and Technology, 2014, 4, 482-493.	2.1	59
98	Catalytic reduction of NO by CO over B-site partially substituted LaM0.25Co0.75O3 (M = Cu, Mn, Fe) perovskite oxide catalysts: The correlation between physicochemical properties and catalytic performance. Applied Catalysis A: General, 2018, 568, 43-53.	2.2	59
99	Tuning interaction between cobalt catalysts and nitrogen dopants in carbon nanospheres to promote Fischer-Tropsch synthesis. Applied Catalysis B: Environmental, 2019, 248, 73-83.	10.8	58
100	Effects of Ce/Zr ratio on the reducibility, adsorption and catalytic activity of CuO/CexZr1â^'xO2/γ-Al2O3 catalysts for NO reduction by CO. Applied Catalysis B: Environmental, 2010, 96, 350-360.	10.8	56
101	Promotion effect of tungsten oxide on SCR of NO with NH3 for the V2O5–WO3/Ti0.5Sn0.5O2 catalyst: Experiments combined with DFT calculations. Journal of Molecular Catalysis A, 2011, 346, 29-38.	4.8	56
102	Effect of ZrO2 addition method on the activity of Al2O3-supported CuO for NO reduction with CO: Impregnation vs. coprecipitation. Applied Catalysis A: General, 2012, 423-424, 42-51.	2.2	56
103	Comparative study on the catalytic CO oxidation properties of CuO/CeO2 catalysts prepared by solid state and wet impregnation. Chinese Journal of Catalysis, 2014, 35, 1347-1358.	6.9	55
104	Characterization of copper oxide supported on ceria-modified anatase. Journal of Molecular Catalysis A, 2004, 219, 155-164.	4.8	54
105	Influence of MnO2 modification methods on the catalytic performance of CuO/CeO2 for NO reduction by CO. Journal of Rare Earths, 2014, 32, 131-138.	2.5	53
106	Dispersion, reduction and catalytic properties of copper oxide supported on Ce0.5Zr0.5O2 solid solution. Journal of Molecular Catalysis A, 2006, 255, 254-259.	4.8	52
107	Catalytic behaviors of CuO supported on Mn2O3 modified Î ³ -Al2O3 for NO reduction by CO. Journal of Molecular Catalysis A, 2010, 332, 32-44.	4.8	52
108	Controlling Dynamic Structural Transformation of Atomically Dispersed CuO _{<i>x</i>} Species and Influence on Their Catalytic Performances. ACS Catalysis, 2019, 9, 9840-9851.	5.5	52

#	Article	IF	CITATIONS
109	Advantageous Role of Ir ⁰ Supported on TiO ₂ Nanosheets in Photocatalytic CO ₂ Reduction to CH ₄ : Fast Electron Transfer and Rich Surface Hydroxyl Groups. ACS Applied Materials & amp; Interfaces, 2021, 13, 6219-6228.	4.0	52
110	Single-Atom Ce-Modified α-Fe ₂ O ₃ for Selective Catalytic Reduction of NO with NH ₃ . Environmental Science & Technology, 2022, 56, 10442-10453.	4.6	52
111	Solid state preparation of NiO-CeO 2 catalyst for NO reduction. Catalysis Today, 2017, 281, 575-582.	2.2	51
112	Synthesis, characterization of bimetallic Ce–Fe-SBA-15 and its catalytic performance in the phenol hydroxylation. Microporous and Mesoporous Materials, 2008, 113, 393-401.	2.2	50
113	Efficient fabrication of ZrO2-doped TiO2 hollow nanospheres with enhanced photocatalytic activity of rhodamine B degradation. Journal of Colloid and Interface Science, 2011, 364, 288-297.	5.0	50
114	Highly dispersed Pd/modified-Al2O3 catalyst on complete oxidation of toluene: Role of basic sites and mechanism insight. Applied Surface Science, 2019, 497, 143747.	3.1	50
115	Facile one-step synthesis of graphitic carbon nitride-modified biochar for the removal of reactive red 120 through adsorption and photocatalytic degradation. Biochar, 2019, 1, 89-96.	6.2	50
116	Improving the denitration performance and K-poisoning resistance of the V2O5-WO3/TiO2 catalyst by Ce4+ and Zr4+ co-doping. Chinese Journal of Catalysis, 2019, 40, 95-104.	6.9	50
117	Effects of different manganese precursors as promoters on catalytic performance of CuO–MnO _x /TiO ₂ catalysts for NO removal by CO. Physical Chemistry Chemical Physics, 2015, 17, 15996-16006.	1.3	49
118	Distinguishing faceted oxide nanocrystals with 17O solid-state NMR spectroscopy. Nature Communications, 2017, 8, 581.	5.8	48
119	Copper Single Atom-Triggered Niobia–Ceria Catalyst for Efficient Low-Temperature Reduction of Nitrogen Oxides. ACS Catalysis, 2022, 12, 2441-2453.	5.5	48
120	Influence of supports structure on the activity and adsorption behavior of copper-based catalysts for NO reduction. Journal of Molecular Catalysis A, 2010, 327, 1-11.	4.8	47
121	Direct synthesis, characterization and catalytic performance of bimetallic Fe–Mo-SBA-15 materials in selective catalytic reduction of NO with NH3. Microporous and Mesoporous Materials, 2012, 151, 44-55.	2.2	46
122	Doping effect of Sm on the TiO ₂ /CeSmO _x catalyst in the NH ₃ -SCR reaction: structure–activity relationship, reaction mechanism and SO ₂ tolerance. Catalysis Science and Technology, 2019, 9, 3554-3567.	2.1	46
123	CeO2 nanosheets with anion-induced oxygen vacancies for promoting photocatalytic toluene mineralization: Toluene adsorption and reactive oxygen species. Applied Catalysis B: Environmental, 2022, 317, 121694.	10.8	46
124	Effect of precursors on the structure and activity of CuO-CoOx/γ-Al2O3 catalysts for NO reduction by CO. Journal of Colloid and Interface Science, 2018, 509, 334-345.	5.0	45
125	Dispersion and Reduction of Copper Oxide Supported on WO3-Modified Ce0.5Zr0.5O2Solid Solution. Journal of Physical Chemistry B, 2005, 109, 3949-3955.	1.2	44
126	Mo doping as an effective strategy to boost low temperature NH3-SCR performance of CeO2/TiO2 catalysts. Catalysis Communications, 2018, 114, 10-14.	1.6	44

#	Article	IF	CITATIONS
127	Enhanced low-temperature NH3-SCR performance of CeTiO catalyst via surface Mo modification. Chinese Journal of Catalysis, 2020, 41, 364-373.	6.9	44
128	Investigation of Two-Phase Intergrowth and Coexistence in Mn–Ce–Ti–O Catalysts for the Selective Catalytic Reduction of NO with NH ₃ : Structure–Activity Relationship and Reaction Mechanism. Industrial & Engineering Chemistry Research, 2019, 58, 849-862.	1.8	43
129	Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NO removal by NH3-SCR. Journal of Hazardous Materials, 2021, 416, 125826.	6.5	43
130	Promotional effect of CO pretreatment on CuO/CeO2 catalyst for catalytic reduction of NO by CO. Journal of Rare Earths, 2014, 32, 139-145.	2.5	42
131	Influence of CeO2 loading on structure and catalytic activity for NH3-SCR over TiO2-supported CeO2. Journal of Rare Earths, 2020, 38, 883-890.	2.5	42
132	Composite catalytic systems: A strategy for developing the low temperature NH3-SCR catalysts with satisfactory SO2 and H2O tolerance. Catalysis Today, 2019, 327, 235-245.	2.2	40
133	Promoting N ₂ Selectivity of CeMnO _{<i>x</i>} Catalyst by Supporting TiO ₂ in NH ₃ -SCR Reaction. Industrial & Engineering Chemistry Research, 2019, 58, 6325-6332.	1.8	40
134	Dispersion of NiO Supported on γ-Al2O3 and TiO2/γ-Al2O3 Supports. Journal of Solid State Chemistry, 2001, 157, 274-282.	1.4	39
135	Research progress on the catalytic elimination of atmospheric molecular contaminants over supported metal-oxide catalysts. Catalysis Science and Technology, 2014, 4, 2814.	2.1	39
136	Comparative Study of Different Doped Metal Cations on the Reduction, Acidity, and Activity of Fe ₉ M ₁ O _{<i>x</i>} (M = Ti ⁴⁺ , Ce ^{4+/3+} ,) Tj ETQq	0 0 0 rgB1 1.8	Qyerlock 10
	Research, 2017, 56, 12101-12110.		
137	Engineering Spiny PtFePd@PtFe/Pt Core@Multishell Nanowires with Enhanced Performance for Alcohol Electrooxidation. ACS Applied Materials & amp; Interfaces, 2019, 11, 30880-30886.	4.0	39
138	Phosphorus-Doped FeNi Alloys/NiFe ₂ O ₄ Imbedded in Carbon Network Hollow Bipyramid as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 2285-2295.	3.2	39
139	Effect of CO pretreatment on the performance of CuO/CeO2/Î ³ -Al2O3 catalysts in CO+O2 reactions. Applied Catalysis A: General, 2009, 360, 26-32.	2.2	38
140	Interactions among supported copper-based catalyst components and their effects on performance: A review. Chinese Journal of Catalysis, 2013, 34, 851-864.	6.9	38
141	Facile construction of pompon-like PtAg alloy catalysts for enhanced ethylene glycol electrooxidation. International Journal of Hydrogen Energy, 2018, 43, 9644-9651.	3.8	38
142	Cavity size dependent SO2 resistance for NH3-SCR of hollow structured CeO2-TiO2 catalysts. Catalysis Communications, 2019, 128, 105719.	1.6	38
143	Getting insight into the effect of CuO on red mud for the selective catalytic reduction of NO by NH3. Journal of Hazardous Materials, 2020, 396, 122459.	6.5	38
144	Study on the crystal plane effect of CuO/TiO2 catalysts in NH3-SCR reaction. Catalysis Today, 2020, 339, 265-273.	2.2	37

#	Article	IF	CITATIONS
145	Novel MnO -CeO2 nanosphere catalyst for low-temperature NH3-SCR. Catalysis Communications, 2017, 100, 98-102.	1.6	36

NO Reduction by CO over Highly Active and Stable Perovskite Oxide Catalysts La_{0.8}Ce_{0.2}M_{0.25}Co_{0.75}O₃ (M = Cu, Mn,) Tj ETQqØ 0 0 rg& /Overloo 146

147	The dispersion of molybdena on ceria. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4589.	1.7	35
148	A Study on the Surface Properties of Ceria-Supported Tungsten and Copper Oxides. Journal of Physical Chemistry B, 2000, 104, 78-85.	1.2	35
149	Effect of MnOx modification on the activity and adsorption of CuO/Ce0.67Zr0.33O2 catalyst for NO reduction. Journal of Colloid and Interface Science, 2010, 349, 246-255.	5.0	35
150	Preparation, characterization, and catalytic performance of high efficient CeO 2 -MnO x -Al 2 O 3 catalysts for NO elimination. Chinese Journal of Catalysis, 2016, 37, 1369-1380.	6.9	35
151	Nonmetal element doped g-C ₃ N ₄ with enhanced H ₂ evolution under visible light irradiation. Journal of Materials Research, 2018, 33, 1268-1278.	1.2	35
152	Getting Insights into the Influence of Crystal Plane Effect of Shaped Ceria on Its Catalytic Performances. Journal of Physical Chemistry C, 2018, 122, 20402-20409.	1.5	35
153	Influence of preparation method on the catalytic activities of CuO/Ce0.67Zr0.33O2 catalysts in CO+O2 reaction. Applied Catalysis B: Environmental, 2010, 96, 449-457.	10.8	34
154	Silver nanocluster in zeolites. ADSORPTION of ETHYLENE traces for fruit preservation. Microporous and Mesoporous Materials, 2019, 283, 25-30.	2.2	34
155	Dispersion and reduction behavior of CuO/α-Fe2O3 systems. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3033-3038.	1.7	33
156	Effect of titania structure on the properties of its supported copper oxide catalysts. Journal of Colloid and Interface Science, 2011, 357, 497-503.	5.0	33
157	Improving the dispersion of CeO2 on γ-Al2O3 to enhance the catalytic performances of CuO/CeO2/γ-Al2O3 catalysts for NO removal by CO. Catalysis Communications, 2014, 51, 95-99.	1.6	33
158	Migration of copper species in Ce _x Cu _{1â^'x} O ₂ catalyst driven by thermal treatment and the effect on CO oxidation. Physical Chemistry Chemical Physics, 2017, 19, 21840-21847.	1.3	33
159	Getting Insights into the Temperature-Specific Active Sites on Platinum Nanoparticles for CO Oxidation: A Combined in Situ Spectroscopic and ab Initio Density Functional Theory Study. ACS Catalysis, 2019, 9, 7759-7768.	5.5	33
160	Novel networked wicker-like PtEe papowires with branch-rich exteriors for efficient		
	electrocatalysis. Nanoscale, 2019, 11, 15561-15566.	2.8	32
161	cobalt nanoparticle with tunable size supported on nitrogen-deficient graphitic carbon nitride for efficient visible light driven H2 evolution reaction. Chemical Engineering Journal, 2020, 381, 122576.	2.8 6.6	32 32

#	Article	IF	CITATIONS
163	Mesoporous ceria–zirconia–alumina nanocomposite-supported copper as a superior catalyst for simultaneous catalytic elimination of NO–CO. Catalysis Communications, 2011, 12, 1311-1317.	1.6	31
164	Surface structure and catalytic properties of MoO3/CeO2 and CuO/MoO3/CeO2. Journal of Colloid and Interface Science, 2011, 364, 435-442.	5.0	31
165	Influence of different impregnation modes on the properties of CuO CeO 2 /γ-Al 2 O 3 catalysts for NO reduction by CO. Applied Surface Science, 2017, 426, 279-286.	3.1	31
166	Selective Catalytic Reduction of NO by NH ₃ on CeO ₂ –MO _{<i>x</i>} (M = Ti, Si, and Al) Dual Composite Catalysts: Impact of Surface Acidity. Industrial & Engineering Chemistry Research, 2018, 57, 490-497.	1.8	31
167	Highly selective catalytic reduction of NOx by MnOx–CeO2–Al2O3 catalysts prepared by self-propagating high-temperature synthesis. Journal of Environmental Sciences, 2019, 75, 124-135.	3.2	31
168	Dopamine sacrificial coating strategy driving formation of highly active surface-exposed Ru sites on Ru/TiO2 catalysts in Fischer–Tropsch synthesis. Applied Catalysis B: Environmental, 2020, 278, 119261.	10.8	31
169	Electron Spin Resonance Studies of CuO Supported on Tetragonal ZrO2. Journal of Catalysis, 1997, 172, 243-246.	3.1	30
170	Highly efficient Pt catalyst on newly designed CeO2-ZrO2-Al2O3 support for catalytic removal of pollutants from vehicle exhaust. Chemical Engineering Journal, 2021, 426, 131855.	6.6	30
171	Surface structure characteristics of CuO/Ti0.5Sn0.5O2 and its activity for CO oxidation. Journal of Molecular Catalysis A, 2012, 365, 87-94.	4.8	29
172	Investigation of the physicochemical properties of CuO–CoO binary metal oxides supported on γ-Al2O3 and their activity for NO removal by CO. Journal of Colloid and Interface Science, 2012, 372, 63-72.	5.0	29
173	Tailoring copper valence states in CuOδ/γ-Al2O3 catalysts by an in situ technique induced superior catalytic performance for simultaneous elimination of NO and CO. Physical Chemistry Chemical Physics, 2013, 15, 14945.	1.3	29
174	Construction of hybrid multi-shell hollow structured CeO ₂ –MnO _x materials for selective catalytic reduction of NO with NH ₃ . RSC Advances, 2017, 7, 5989-5999.	1.7	28
175	Preparation and Investigation of Iron–Cerium Oxide Compounds for NO _{<i>x</i>} Reduction. Industrial & Engineering Chemistry Research, 2018, 57, 16675-16683.	1.8	28
176	Enhanced catalytic properties of Cu-based composites for NOx reduction with coexistence and intergrowth effect. Fuel, 2018, 234, 296-304.	3.4	28
177	Understanding the high performance of an iron-antimony binary metal oxide catalyst in selective catalytic reduction of nitric oxide with ammonia and its tolerance of water/sulfur dioxide. Journal of Colloid and Interface Science, 2021, 581, 427-441.	5.0	28
178	Enhanced low-temperature catalytic performance for toluene combustion of CeO2-supported Pt-Ir alloy catalysts. Applied Surface Science, 2022, 580, 152278.	3.1	28
179	Catalytic performance of highly dispersed WO 3 loaded on CeO 2 in the selective catalytic reduction of NO by NH 3. Chinese Journal of Catalysis, 2017, 38, 1749-1758.	6.9	27
180	Efficient Conversion of Bio‣actic Acid to 2,3â€Pentanedione on Cesiumâ€Doped Hydroxyapatite Catalysts with Balanced Acid–Base Sites. ChemCatChem, 2017, 9, 4621-4627.	1.8	27

#	Article	IF	CITATIONS
181	Surface hydroxylated hematite promotes photoinduced hole transfer for water oxidation. Journal of Materials Chemistry A, 2019, 7, 8050-8054.	5.2	27
182	Tuning Singleâ€atom Pt ₁ â^'CeO ₂ Catalyst for Efficient CO and C ₃ H ₆ Oxidation: Size Effect of Ceria on Pt Structural Evolution. ChemNanoMat, 2020, 6, 1797-1805.	1.5	27
183	Dispersion Behaviors of Molybdena on Titania (Rutile and/or Anatase). Journal of Physical Chemistry B, 2005, 109, 11720-11726.	1.2	26
184	Influence of cerium modification methods on catalytic performance of Au/mordenite catalysts in CO oxidation. Applied Catalysis B: Environmental, 2012, 127, 234-245.	10.8	26
185	Dislocation-accelerated void formation under irradiation in zirconium. Acta Materialia, 2015, 82, 94-99.	3.8	26
186	Superior liquid fuel oxidation electrocatalysis enabled by novel bimetallic PtNi nanorods. Journal of Power Sources, 2019, 425, 179-185.	4.0	26
187	Enhancing low-temperature NH3-SCR performance of Fe–Mn/CeO2 catalyst by Al2O3 modification. Journal of Rare Earths, 2022, 40, 1454-1461.	2.5	26
188	Studies on supported metal oxide-oxide support interactions (An Incorporation Model). Studies in Surface Science and Catalysis, 1996, 101, 1293-1302.	1.5	25
189	Influence of magnesia modification on the properties of copper oxide supported on γ-alumina. Journal of Colloid and Interface Science, 2008, 320, 520-526.	5.0	25
190	Hierarchical branched platinum–copper tripods as highly active and stable catalysts. Nanoscale, 2018, 10, 8246-8252.	2.8	25
191	High-density surface protuberances endow ternary PtFeSn nanowires with high catalytic performance for efficient alcohol electro-oxidation. Nanoscale, 2019, 11, 18176-18182.	2.8	25
192	Trimetallic platinum-nickel-palladium nanorods with abundant bumps as robust catalysts for methanol electrooxidation. Journal of Colloid and Interface Science, 2020, 561, 512-518.	5.0	25
193	Preparation, Characterization and Catalytic Activity for CO Oxidation of SiO2 Hollow Spheres Supporting CuO Catalysts. Catalysis Letters, 2008, 120, 215-220.	1.4	24
194	Fabrication of highly dispersed/active ultrafine Pd nanoparticle supported catalysts: a facile solvent-free in situ dispersion/reduction method. Green Chemistry, 2017, 19, 2646-2652.	4.6	24
195	Morphology-Sensitive Sulfation Effect on Ceria Catalysts for NH3-SCR. Topics in Catalysis, 2020, 63, 932-943.	1.3	24
196	The dual effects of ammonium bisulfate on the selective catalytic reduction of NO with NH3 over Fe2O3-WO3 catalyst confined in MCM-41. Chemical Engineering Journal, 2020, 389, 124271.	6.6	24
197	Ball-milled Bi2MoO6/biochar composites for synergistic adsorption and photodegradation of methylene blue: Kinetics and mechanisms. Industrial Crops and Products, 2022, 186, 115229.	2.5	24
198	A Study on the Dispersion of NiO and/or WO3 on Anatase. Journal of Catalysis, 2000, 193, 88-95.	3.1	23

#	Article	IF	CITATIONS
199	Crystal-plane-dependent metal–support interaction in Au/TiO ₂ . Physical Chemistry Chemical Physics, 2015, 17, 5133-5140.	1.3	23
200	Imaging of a clickable anticancer iridium catalyst. Journal of Inorganic Biochemistry, 2018, 180, 179-185.	1.5	23
201	Catalytic enhancement of small sizes of CeO2 additives on Ir/Al2O3 for toluene oxidation. Applied Surface Science, 2022, 571, 151200.	3.1	23
202	An efficient strategy for highly loaded, well dispersed and thermally stable metal oxide catalysts. Catalysis Communications, 2011, 12, 1075-1078.	1.6	22
203	Determination of catalytic oxidation products of phenol by RP-HPLC. Research on Chemical Intermediates, 2012, 38, 549-558.	1.3	22
204	Advantageous Interfacial Effects of AgPd/gâ€C ₃ N ₄ for Photocatalytic Hydrogen Evolution: Electronic Structure and H ₂ O Dissociation. Chemistry - A European Journal, 2019, 25, 5058-5064.	1.7	22
205	Promotional Effect of Ce on Iron-Based Catalysts for Selective Catalytic Reduction of NO with NH3. Catalysts, 2016, 6, 112.	1.6	21
206	Tunable long-chains of core@shell PdAg@Pd as high-performance catalysts for ethanol oxidation. Journal of Colloid and Interface Science, 2020, 574, 182-189.	5.0	21
207	Transformation of Highly Stable Pt Single Sites on Defect Engineered Ceria into Robust Pt Clusters for Vehicle Emission Control. Environmental Science & Technology, 2021, 55, 12607-12618.	4.6	21
208	Dispersion state of CuO on CeO2. Science in China Series B: Chemistry, 1997, 40, 24-30.	0.8	20
209	Treatment induced remarkable enhancement of low-temperature activity and selectivity of copper-based catalysts for NO reduction. Catalysis Science and Technology, 2013, 3, 1547.	2.1	20
210	Investigation of the physicochemical properties of CuO/Sm 2 O 3 /γ-Al 2 O 3 catalysts and their activity for NO removal by CO. Journal of Molecular Catalysis A, 2016, 420, 34-44.	4.8	20
211	Synthesis of CrOx/C catalysts for low temperature NH3-SCR with enhanced regeneration ability in the presence of SO2. RSC Advances, 2018, 8, 3858-3868.	1.7	20
212	Shape-controlled PdSn alloy as superior electrocatalysts for alcohol oxidation reactions. Journal of the Taiwan Institute of Chemical Engineers, 2019, 101, 167-176.	2.7	20
213	Surface configuration modulation for FeO -CeO2/Î ³ -Al2O3 catalysts and its influence in CO oxidation. Journal of Catalysis, 2020, 386, 139-150.	3.1	20
214	Cerium manganese oxides coupled with ZSM-5: A novel SCR catalyst with superior K resistance. Chemical Engineering Journal, 2022, 445, 136530.	6.6	20
215	Investigations of surface VOx species and their contributions to activities of VOx/Ti0.5Sn0.5O2 catalysts toward selective catalytic reduction of NO by NH3. Applied Catalysis A: General, 2012, 431-432, 126-136.	2.2	19
216	Facile two-step treatment of carbon nitride for preparation of highly efficient visible-light photocatalyst. Applied Catalysis B: Environmental, 2018, 227, 541-547.	10.8	19

#	Article	IF	CITATIONS
217	Monodispersed bimetallic platinum-copper alloy nanospheres as efficient catalysts for ethylene glycol electrooxidation. Journal of Colloid and Interface Science, 2019, 551, 81-88.	5.0	19
218	Precise synthesis of monodisperse PdAg nanoparticles for size-dependent electrocatalytic oxidation reactions. Journal of Colloid and Interface Science, 2019, 544, 284-292.	5.0	19
219	Real time imaging of photocatalytic active site formation during H2 evolution by in-situ TEM. Applied Catalysis B: Environmental, 2021, 284, 119743.	10.8	19
220	Molybdenum oxide as an efficient promoter to enhance the NH3-SCR performance of CeO2-SiO2 catalyst for NO removal. Catalysis Today, 2022, 397-399, 475-483.	2.2	19
221	Effects of different methods of introducing Mo on denitration performance and anti-SO2 poisoning performance of CeO2. Chinese Journal of Catalysis, 2021, 42, 1488-1499.	6.9	19
222	Relationships between Adsorption Amount of Surface Sulfate and NH ₃ -SCR Performance over CeO ₂ . Journal of Physical Chemistry C, 2021, 125, 21964-21974.	1.5	19
223	Pressure effect on stabilities of self-Interstitials in HCP-Zirconium. Scientific Reports, 2014, 4, 5735.	1.6	18
224	The facet-regulated oxidative dehydrogenation of lactic acid to pyruvic acid on α-Fe ₂ O ₃ . Green Chemistry, 2021, 23, 328-332.	4.6	18
225	Enhanced methanol selectivity of Cu O/TiO2 photocatalytic CO2 reduction: Synergistic mechanism of surface hydroxyl and low-valence copper species. Journal of CO2 Utilization, 2022, 55, 101825.	3.3	18
226	Sulfur Vacancy-Rich MoS ₂ -Catalyzed Hydrodeoxygenation of Lactic Acid to Biopropionic Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 5463-5475.	3.2	18
227	In situ surface assembly of core-shell TiO2-copper(I) cluster nanocomposites for visible-light photocatalytic reduction of Cr(VI). Applied Catalysis B: Environmental, 2017, 205, 368-375.	10.8	17
228	Synthesis of Both Powdered and Preformed MnO <i>_x</i> –CeO ₂ –Al ₂ O ₃ Catalysts by Self-Propagating High-Temperature Synthesis for the Selective Catalytic Reduction of NO <i>_x</i> with NH ₃ . ACS Omega, 2018, 3, 5692-5703.	1.6	17
229	Synergistic effects of CeO2/Cu2O on CO catalytic oxidation: Electronic interaction and oxygen defect. Journal of Rare Earths, 2022, 40, 1211-1218.	2.5	17
230	The application of incorporation model in γ-Al2O3 supported single and dual metal oxide catalysts: A review. Chinese Journal of Catalysis, 2013, 34, 1975-1985.	6.9	16
231	Ultrathin one-dimensional platinum-cobalt nanowires as efficient catalysts for the glycerol oxidation reaction. Journal of Colloid and Interface Science, 2019, 556, 441-448.	5.0	16
232	The chain-typed nanoflowers structure endows PtBi with highly electrocatalytic activity of ethylene glycol oxidation. Journal of Alloys and Compounds, 2019, 789, 834-840.	2.8	16
233	Vapor-Phase Deoxygenation of Lactic Acid to Biopropionic Acid over Dispersant-Enhanced Molybdenum Oxide Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 101-109.	1.8	16
234	Dispersion of Fe2O3 supported on metal oxides studied by Mössbauer spectroscopy and XRD. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 2203-2206.	1.7	15

#	Article	IF	CITATIONS
235	Influence of ferric oxide modification on the properties of copper oxide supported on γ-alumina. Journal of Colloid and Interface Science, 2010, 343, 522-528.	5.0	15
236	Insights into the precursor effect on the surface structure of γ-Al2O3 and NO + CO catalytic performance of CO-pretreated CuO/MnOx/γ-Al2O3 catalysts. Journal of Colloid and Interface Science, 2019, 554, 611-618.	5.0	15
237	Solid-phase impregnation promotes Ce doping in TiO2 for boosted denitration of CeO2/TiO2 catalysts. Chinese Chemical Letters, 2022, 33, 935-938.	4.8	15
238	PtNiCu nanowires with advantageous lattice-plane boundary for enhanced ethanol electrooxidation. Nano Research, 2022, 15, 2877-2886.	5.8	15
239	A study of CuO/CeO2/Al–Zr–O in "NO + CO― Catalysis Communications, 2004, 5, 453-456.	1.6	14
240	Effect of maltose for the crystallization of tetragonal zirconia. Materials Letters, 2004, 58, 3107-3110.	1.3	14
241	Particle size effects of PtAg nanoparticles on the catalytic electrooxidation of liquid fuels. Inorganic Chemistry Frontiers, 2018, 5, 1174-1179.	3.0	13
242	Activity enhancement of WO3 modified FeTiO catalysts for the selective catalytic reduction of NO by NH3. Catalysis Today, 2021, 375, 614-622.	2.2	13
243	Ammonia promoted barium sulfate catalyst for dehydration of lactic acid to acrylic acid. RSC Advances, 2017, 7, 54696-54705.	1.7	12
244	Influence of calcination temperature on the plate-type V2O5–MoO3/TiO2 catalyst for selective catalytic reduction of NO. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 603-617.	0.8	12
245	Pt Deposites on TiO2 for Photocatalytic H2 Evolution: Pt Is Not Only the Cocatalyst, but Also the Defect Repair Agent. Catalysts, 2020, 10, 1047.	1.6	12
246	Unraveling the SO ₂ Poisoning Effect over the Lifetime of MeO _{<i>x</i>} (Me =) Tj ETQqQ with Surface Species. Journal of Physical Chemistry C, 2022, 126, 12168-12177.) 0 0 rgBT 1.5	/Overlock 10 12
247	Ethylene Glycol Electrooxidation Based on Pentangle‣ike PtCu Nanocatalysts. Chemistry - an Asian Journal, 2018, 13, 626-630.	1.7	11
248	Effect of different introduction methods of cerium and tin on the properties of titanium-based catalysts for the selective catalytic reduction of NO by NH3. Journal of Colloid and Interface Science, 2022, 613, 320-336.	5.0	11
249	Plasma assisted preparation of cobalt catalysts by sol–gel method for methane combustion. Journal of Sol-Gel Science and Technology, 2008, 47, 354-359.	1.1	10
250	Understanding the effect of CuO dispersion state on the activity of CuO modified Ce0.7Zr0.3O2 for NO removal. Applied Surface Science, 2017, 403, 347-355.	3.1	10
251	Highly stable Pt3Ni ultralong nanowires tailored with trace Mo for the ethanol oxidation. Nano Research, 2022, 15, 3230-3238.	5.8	10
252	Influence of WO3 monolayer modification on the properties of Ce Zr1â^'O2-supporting CuO catalysts. Catalysis Communications, 2009, 10, 741-745.	1.6	9

#	Article	IF	CITATIONS
253	The influence of microwave plasma pretreated CuO/TiO2 catalysts in NO+CO reaction. Catalysis Today, 2011, 175, 34-39.	2.2	9
254	A PEG/copper(<scp>i</scp>) halide cluster as an eco-friendly catalytic system for C–N bond formation. Dalton Transactions, 2018, 47, 7463-7470.	1.6	9
255	Cuprous cluster as effective single-molecule metallaphotocatalyst in white light-driven C H arylation. Journal of Catalysis, 2019, 378, 270-276.	3.1	9
256	Effects of different treatment atmospheres on CeO ₂ /g-C ₃ N ₄ photocatalytic CO ₂ reduction: good or bad?. Catalysis Science and Technology, 2021, 11, 2827-2833.	2.1	9
257	Surface interactions of MoO3/ α-Fe2O3 system. Science Bulletin, 2000, 45, 214-219.	1.7	8
258	The effects of Ag particle morphology on the antireflective properties of silicon textured using Ag-assisted chemical etching. Journal of Alloys and Compounds, 2016, 670, 156-160.	2.8	8
259	Effects of S and Ta codoping on photocatalytic activity of rutile TiO2. Journal of Sol-Gel Science and Technology, 2018, 86, 631-639.	1.1	8
260	High Resistance of SO2 and H2O over Monolithic Mn-Fe-Ce-Al-O Catalyst for Low Temperature NH3-SCR. Catalysts, 2020, 10, 1329.	1.6	8
261	Sustainable production of pyruvic acid: oxidative dehydrogenation of lactic acid over the FeMoO/P catalyst. New Journal of Chemistry, 2020, 44, 5884-5894.	1.4	8
262	Evaluation of Manganese Oxide Octahedral Molecular Sieves for CO and C3H6 Oxidation at Diesel Exhaust Conditions. Frontiers in Environmental Chemistry, 2021, 2, .	0.7	8
263	Interfacial synergistic effect in SnO2/PtNi nanocrystals enclosed by high-index facets for high-efficiency ethylene glycol electrooxidation. Nano Research, 2022, 15, 7877-7886.	5.8	8
264	Direct synthesis of Ti-SBA-15 in the self-generated acidic environment and its photodegradation of Rhodamine B. Journal of Porous Materials, 2014, 21, 63-70.	1.3	7
265	Unravelling the structure sensitivity of CuO/SiO ₂ catalysts in the NO + CO reaction. Catalysis Science and Technology, 2020, 10, 3848-3856.	2.1	7
266	Synthesis, Characterization of Bimetallic V-Fe-SBA-15 and Its Catalytic Performance in the Hydroxylation of Phenol. Journal of Nanoscience and Nanotechnology, 2007, 7, 4508-4514.	0.9	6
267	Insight into the promotional mechanism of Cu modification towards wide-temperature NH3-SCR performance of NbCe catalyst. Chinese Journal of Chemical Engineering, 2022, 50, 301-309.	1.7	6
268	CeO2 doping boosted low-temperature NH3-SCR activity of FeTiOx catalyst: A microstructure analysis and reaction mechanistic study. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	5
269	Effect of Ag Film Thickness on the Morphology and Light Scattering Properties of Ag Nanoparticles. Nanoscience and Nanotechnology Letters, 2014, 6, 392-397.	0.4	4
270	Regeneration of deactivated CeCo O2 catalyst by simple thermal treatment. Journal of Rare Earths, 2020, 38, 899-905.	2.5	4

#	Article	IF	CITATIONS
271	An efficient and durable hierarchically porous KLA/TiPO catalyst for vapor phase condensation of lactic acid to 2,3-pentanedione. New Journal of Chemistry, 2019, 43, 5972-5979.	1.4	3
272	Pilot test of environment-friendly catalysts for the DeNO _x of low-temperature flue gas from a coal-fired plant. Catalysis Science and Technology, 2021, 11, 3164-3175.	2.1	3
273	Vibrational Spectroscopic Studies of Molybdena Dispersed on Ceria Support. Spectroscopy Letters, 1998, 31, 441-457.	0.5	2
274	A study of thoria on the surface of \hat{I}^3 -Al2O3. Journal of Colloid and Interface Science, 2003, 257, 408-411.	5.0	2
275	Influence of iron content on the structure and catalytic activity for the hydroxylation phenol of Fe-MCM41. Studies in Surface Science and Catalysis, 2007, 165, 755-759.	1.5	2
276	One-Pot Synthesis of CeO2 Modified SBA-15 With No Pore Clogging for NO Reduction by CO. Frontiers in Environmental Chemistry, 2021, 2, .	0.7	2
277	CuCeO _{<i>x</i>} /VMT powder and monolithic catalyst for CO-selective catalytic reduction of NO with CO. New Journal of Chemistry, 2022, 46, 10422-10432.	1.4	2
278	Surface state of molybdenum cations in MoO3/CeO2. Science Bulletin, 1997, 42, 1278-1282.	1.7	1
279	A Highly Ordered Self-Assembly Three-Grade Porous Helical Silica Tube. Journal of Nanoscience and Nanotechnology, 2008, 8, 1497-1501.	0.9	1
280	A first-principles study of the avalanche pressure of alpha zirconium. RSC Advances, 2016, 6, 72551-72558.	1.7	1
281	The Synergistic Effect of Bimetallic Zn–Ti in MCM-41 Support for the Improvement of Catalytic Activity. Journal of Nanoscience and Nanotechnology, 2016, 16, 7742-7749.	0.9	1
282	The effects of dopant on catalytic activity of Pd/mesoporous alumina for toluene oxidation. Research on Chemical Intermediates, 2021, 47, 1239-1251.	1.3	1
283	A Highly Ordered Self-Assembly Three-Grade Porous Helical Silica Tube. Journal of Nanoscience and Nanotechnology, 2008, 8, 1497-1501.	0.9	1
284	Boosting the catalytic performance of single-atom catalysts by tuning surface lattice expanding confinement. Chemical Communications, 0, , .	2.2	1
285	Synthesis and Catalytic Activity of Fe-MCM-41 Nanoparticles. Advanced Materials Research, 2014, 933, 17-22.	0.3	0
286	Identifying the active sites of CuO/Ce0.67Sn0.33O2 catalysts for NO removal. , 2015, , 501-505.		0
287	Core–Shell Materials for Photocatalytic CO2 Reduction. Nanostructure Science and Technology, 2021, , 201-214.	0.1	0
288	Recent Progress of Cu-Based Catalysts for Catalytic Elimination of CO. Chinese Journal of Catalysis, 2013, 33, 1245-1256.	6.9	0

#	Article	IF	CITATIONS
289	A highly ordered self-assembly three-grade porous helical silica tube. Journal of Nanoscience and Nanotechnology, 2008, 8, 1497-501.	0.9	0