Daniel G A Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1737409/publications.pdf

Version: 2024-02-01

394421 526287 2,633 27 19 27 citations g-index h-index papers 34 34 34 3310 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Implementation of symmetry-adapted perturbation theory based on density functional theory and using hybrid exchange–correlation kernels for dispersion terms. Journal of Chemical Physics, 2022, 157, .	3.0	6
2	The <scp>MolSSI</scp> QCA <scp>rchive</scp> project: An openâ€source platform to compute, organize, and share quantum chemistry data. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1491.	14.6	42
3	Optimized damping parameters for empirical dispersion corrections to symmetry-adapted perturbation theory. Journal of Chemical Physics, 2021, 154, 234107.	3.0	3
4	Development and Benchmarking of Open Force Field v1.0.0â€"the Parsley Small-Molecule Force Field. Journal of Chemical Theory and Computation, 2021, 17, 6262-6280.	5.3	80
5	OrbNet Denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and DFT accuracy. Journal of Chemical Physics, 2021, 155, 204103.	3.0	40
6	Quantum Chemistry Common Driver and Databases (QCDB) and Quantum Chemistry Engine (QCE <scp>ngine</scp>): Automation and interoperability among computational chemistry programs. Journal of Chemical Physics, 2021, 155, 204801.	3.0	15
7	The CECAM electronic structure library and the modular software development paradigm. Journal of Chemical Physics, 2020, 153, 024117.	3.0	19
8	P <scp>SI4</scp> 1.4: Open-source software for high-throughput quantum chemistry. Journal of Chemical Physics, 2020, 152, 184108.	3.0	440
9	Efficient and automated computation of accurate molecular geometries using focal-point approximations to large-basis coupled-cluster theory. Journal of Chemical Physics, 2020, 152, 124109.	3.0	15
10	Driving torsion scans with wavefront propagation. Journal of Chemical Physics, 2020, 152, 244116.	3.0	22
11	Stochastic resolution of identity second-order Matsubara Green's function theory. Journal of Chemical Physics, 2019, 151, 044114.	3.0	9
12	Sharing Data from Molecular Simulations. Journal of Chemical Information and Modeling, 2019, 59, 4093-4099.	5.4	26
13	PES-Learn: An Open-Source Software Package for the Automated Generation of Machine Learning Models of Molecular Potential Energy Surfaces. Journal of Chemical Theory and Computation, 2019, 15, 4386-4398.	5. 3	51
14	First-order symmetry-adapted perturbation theory for multiplet splittings. Journal of Chemical Physics, 2018, 148, 164110.	3.0	12
15	Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science. Journal of Chemical Physics, 2018, 149, 180901.	3.0	72
16	P <scp>si</scp> 4N <scp>um</scp> P <scp>y</scp> : An Interactive Quantum Chemistry Programming Environment for Reference Implementations and Rapid Development. Journal of Chemical Theory and Computation, 2018, 14, 3504-3511.	5. 3	106
17	opt_einsum - A Python package for optimizing contraction order for einsum-like expressions. Journal of Open Source Software, 2018, 3, 753.	4.6	46
18	<scp>Psi4</scp> 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. Journal of Chemical Theory and Computation, 2017, 13, 3185-3197.	5.3	961

#	Article	IF	CITATION
19	The BioFragment Database (BFDb): An open-data platform for computational chemistry analysis of noncovalent interactions. Journal of Chemical Physics, 2017, 147, 161727.	3.0	82
20	Revised Damping Parameters for the D3 Dispersion Correction to Density Functional Theory. Journal of Physical Chemistry Letters, 2016, 7, 2197-2203.	4.6	305
21	Benchmarking the CO ₂ Adsorption Energy on Carbon Nanotubes. Journal of Physical Chemistry C, 2015, 119, 4934-4948.	3.1	47
22	An accurate benchmark description of the interactions between carbon dioxide and polyheterocyclic aromatic compounds containing nitrogen. Physical Chemistry Chemical Physics, 2015, 17, 16560-16574.	2.8	30
23	Toward an Accurate Description of Methane Physisorption on Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 544-550.	3.1	22
24	Highly Correlated Electronic Structure Calculations of the He–C ₃ van der Waals Complex and Collision-Induced Rotational Transitions of C ₃ . Journal of Physical Chemistry A, 2014, 118, 6351-6360.	2.5	13
25	Basis Set Convergence of the Post-CCSD(T) Contribution to Noncovalent Interaction Energies. Journal of Chemical Theory and Computation, 2014, 10, 3140-3150.	5.3	43
26	Interactions between Methane and Polycyclic Aromatic Hydrocarbons: A High Accuracy Benchmark Study. Journal of Chemical Theory and Computation, 2013, 9, 370-389.	5. 3	36
27	Highly accurate potential energy surface for the He–H2 dimer. Journal of Chemical Physics, 2013, 139, 144305.	3.0	46