
Nabila Khellaf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1737185/publications.pdf Version: 2024-02-01

NARILA KHELLAF

#	Article	IF	CITATIONS
1	Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L Bioresource Technology, 2009, 100, 6137-6140.	9.6	74
2	Growth response of the duckweed Lemna gibba L. to copper and nickel phytoaccumulation. Ecotoxicology, 2010, 19, 1363-1368.	2.4	70
3	Photocatalytic Reactors Dedicated to the Degradation of Hazardous Organic Pollutants: Kinetics, Mechanistic Aspects, and Design – A Review. Chemical Engineering Communications, 2016, 203, 1415-1431.	2.6	65
4	Photocatalytic Performance of CuxO/TiO2 Deposited by HiPIMS on Polyester under Visible Light LEDs: Oxidants, Ions Effect, and Reactive Oxygen Species Investigation. Materials, 2019, 12, 412.	2.9	49
5	Reactive species monitoring and their contribution for removal of textile effluent with photocatalysis under UV and visible lights: Dynamics and mechanism. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 365, 94-102.	3.9	45
6	Combining photocatalytic process and biological treatment for Reactive Green 12 degradation: optimization, mineralization, and phytotoxicity with seed germination. Environmental Science and Pollution Research, 2021, 28, 12490-12499.	5.3	34
7	Inhibition Efficiency of Cinnamon Oil as a Green Corrosion Inhibitor. Journal of Bio- and Tribo-Corrosion, 2019, 5, 1.	2.6	30
8	Biosorption of synthetic dyes (Direct Red 89 and Reactive Green 12) as an ecological refining step in textile effluent treatment. Environmental Science and Pollution Research, 2013, 20, 3822-3829.	5.3	27
9	Photocatalytic performance of TiO 2 impregnated polyester for the degradation of Reactive Green 12: Implications of the surface pretreatment and the microstructure. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 493-501.	3.9	25
10	Phytoaccumulation of zinc using the duckweed <i>Lemna gibba</i> L.: effect of temperature, pH and metal source. Desalination and Water Treatment, 2013, 51, 5755-5760.	1.0	11
11	An Overview of the Valorization of Aquatic Plants in Effluent Depuration through Phytoremediation Processes. Applied Microbiology, 2022, 2, 309-318.	1.6	7
12	Can duckweed be used for the biomonitoring of textile effluents?. Euro-Mediterranean Journal for Environmental Integration, 2019, 4, 1.	1.3	6
13	Synthesis of an environmental nano-polyoxometalate (α2P2W17CoO61)8â^' as catalyst for dyes degradation: A comparative study oxidation of indigoid and azo dyes. Environmental Nanotechnology, Monitoring and Management, 2019, 12, 100269.	2.9	6
14	Photocatalytic and biodegradation treatments of paracetamol: investigation of the in vivo toxicity. Environmental Science and Pollution Research, 2021, 28, 14530-14545.	5.3	6
15	Surfactant Recovery by Foam Fractionation using the Gas-Liquid Contactor, Emulsion Venturi. Separation Science and Technology, 2014, 49, 311-316.	2.5	5
16	Development of a kinetic model for the removal of zinc using the aquatic macrophyte, Lemna gibba L Water Science and Technology, 2012, 66, 953-957.	2.5	4
17	An effective acid pretreatment of agricultural biomass residues for the production of second-generation bioethanol. SN Applied Sciences, 2019, 1, 1.	2.9	3
18	Simultaneous biosorption of the two synthetic dyes, Direct Red 89 and Reactive Green 12 using nonliving macrophyte <i>L. gibba</i> L. Desalination and Water Treatment, 0, , 1-9.	1.0	2

#	Article	IF	CITATIONS
19	Biosorption of the Anionic Dye Direct Red 89 by the Aquatic Plant Callitriche obtusangula. , 2018, , 540-548.		1
20	Intensified Photocatalytic Degradation of Solophenyl Scarlet BNLE in Simulated Textile Effluents Using TiO2 Supported on Cellulosic Tissue. International Journal of Chemical Reactor Engineering, 2020, 18, .	1.1	0