George Schoendorff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1736657/publications.pdf

Version: 2024-02-01

26 346 11 papers citations h-index

18 g-index

26 2 all docs docs ci

26 26 docs citations times ranked

395 citing authors

#	Article	IF	CITATIONS
1	Highly Enantioselective Zirconium-Catalyzed Cyclization of Aminoalkenes. Journal of the American Chemical Society, 2013, 135, 7235-7250.	13.7	77
2	Gauging the Performance of Density Functionals for Lanthanide-Containing Molecules. Journal of Chemical Theory and Computation, 2016, 12, 1259-1266.	5. 3	39
3	Efficacy of Density Functionals and Relativistic Effective Core Potentials for Lanthanide-Containing Species: The Ln54 Molecule Set. Journal of Chemical Theory and Computation, 2017, 13, 2831-2839.	5.3	25
4	Relativistic <i>ab Initio</i> Accurate Atomic Minimal Basis Sets: Quantitative LUMOs and Oriented Quasi-Atomic Orbitals for the Elements Li–Xe. Journal of Physical Chemistry A, 2017, 121, 3588-3597.	2.5	18
5	Quasi-Atomic Bond Analyses in the Sixth Period: II. Bond Analyses of Cerium Oxides. Journal of Physical Chemistry A, 2019, 123, 5249-5256.	2.5	18
6	Low valency in lanthanides: A theoretical study of NdF and LuF. Journal of Chemical Physics, 2014, 140, 224314.	3.0	17
7	Roles of Acetone and Diacetone Alcohol in Coordination and Dissociation Reactions of Uranyl Complexes. Inorganic Chemistry, 2012, 51, 12768-12775.	4.0	16
8	Multiple Bonding in Rhodium Monoboride. Quasi-atomic Analyses of the Ground and Low-Lying Excited States. Journal of Physical Chemistry A, 2021, 125, 4836-4846.	2.5	16
9	Structure, bonding, and ligand-based reactions of zwitterionic boratoiridium(I) complexes with oxazolinyl scorpionate ligands. Inorganica Chimica Acta, 2009, 362, 4517-4525.	2.4	15
10	Density Functional Studies on the Complexation and Spectroscopy of Uranyl Ligated with Acetonitrile and Acetone Derivatives. Journal of Physical Chemistry A, 2009, 113, 12525-12531.	2.5	13
11	On the Formation of "Hypercoordinated―Uranyl Complexes. Inorganic Chemistry, 2011, 50, 8490-8493.	4.0	11
12	Quasi-Atomic Bond Analyses in the Sixth Period: I. Relativistic Accurate Atomic Minimal Basis Sets for the Elements Cesium to Radon. Journal of Physical Chemistry A, 2019, 123, 5242-5248.	2.5	11
13	A Neoteric Neodymium Model: Ground and Excited Electronic State Analysis of NdF ²⁺ . Journal of Physical Chemistry A, 2013, 117, 10881-10888.	2.5	10
14	MR-ccCA: A route for accurate ground and excited state potential energy curves and spectroscopic properties for third-row diatomic molecules. Computational and Theoretical Chemistry, 2014, 1040-1041, 72-83.	2.5	9
15	Structure and Bonding of Palladium Oxos as Possible Intermediates in Metal–Carbon Oxy Insertion Reactions. Organometallics, 2013, 32, 4993-4996.	2.3	8
16	Behavior of the Sapporo-nZP-2012 basis set family. Chemical Physics Letters, 2015, 637, 120-126.	2.6	8
17	A study on the electronic and structural properties of fullerene C30 and azafullerene C18N12. Computational and Theoretical Chemistry, 2010, 942, 71-76.	1.5	7
18	Ground and Excited Electronic State Analysis of PrF ²⁺ and PmF ²⁺ . Journal of Physical Chemistry A, 2015, 119, 1683-1688.	2.5	7

#	Article	IF	CITATIONS
19	A Computational Study on the Ground and Excited States of Nickel Silicide. Journal of Physical Chemistry A, 2015, 119, 9630-9635.	2.5	5
20	Dissociation energy and electronic structure of the low valent lanthanide compound NdF ⁺ . International Journal of Quantum Chemistry, 2016, 116, 791-794.	2.0	5
21	Gas Phase Computational Studies on the Competition between Nitrile and Water Ligands in Uranyl Complexes ^{â€} . Journal of Physical Chemistry A, 2010, 114, 8902-8912.	2.5	4
22	Excited states of lutetium oxide and its singly charged cation. Journal of Chemical Physics, 2022, 156, 084303.	3.0	2
23	Segmented correlation consistent basis sets for the 4d and 5d transition metals. Journal of Chemical Physics, 2022, 156, 064102.	3.0	2
24	Development of an Open Source Tool for Basis Set Optimizations and Application to the Development of a Quadruple-ζ Segmented Basis Set for Actinium. ACS Symposium Series, 0, , 329-346.	0.5	2
25	Spectroscopic properties of Arx–Zn and Arx–Ag+(x= 1,2) van der Waals complexes. Journal of Chemical Physics, 2013, 138, 104116.	3.0	1
26	The Importance of Orbital Analysis. Progress in Theoretical Chemistry and Physics, 2015, , 3-28.	0.2	0