List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1736556/publications.pdf Version: 2024-02-01

r

#	Article	IF	CITATIONS
1	Nuclear αvβ3 integrin expression, post translational modifications and regulation in hematological malignancies. Hematological Oncology, 2022, 40, 73-82.	1.7	3
2	Three-Dimensional Modeling of Thyroid Hormone Metabolites Binding to the Cancer-Relevant αvβ3 Integrin: In-Silico Based Study. Frontiers in Endocrinology, 2022, 13, .	3.5	4
3	DIO3, the thyroid hormone inactivating enzyme, promotes tumorigenesis and metabolic reprogramming in high grade serous ovarian cancer. Cancer Letters, 2021, 501, 224-233.	7.2	10
4	Enhanced expression of αVβ3 integrin in villus and extravillous trophoblasts of placenta accreta. Archives of Gynecology and Obstetrics, 2021, 303, 1175-1183.	1.7	5
5	Dihydrolipoamide dehydrogenase moonlighting activity as a <scp>DNA</scp> chelating agent. Proteins: Structure, Function and Bioinformatics, 2021, 89, 21-28.	2.6	6
6	Opposing effects of thyroid hormones on cancer risk: a population-based study. European Journal of Endocrinology, 2021, 184, 477-486.	3.7	9
7	αvβ3 Integrin Expression and Mitogenic Effects by Thyroid Hormones in Chronic Lymphocytic Leukemia. Journal of Clinical Medicine, 2021, 10, 1766.	2.4	4
8	Targeting the DIO3 enzyme using first-in-class inhibitors effectively suppresses tumor growth: a new paradigm in ovarian cancer treatment. Oncogene, 2021, 40, 6248-6257.	5.9	7
9	Pre-diagnosis thyroid hormone dysfunction is associated with cancer mortality. Endocrine-Related Cancer, 2021, 28, 705-713.	3.1	8
10	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 3	882 Td (editic 1,430
11	The identification of nuclear αvβ3 integrin in ovarian cancer: non-paradigmal localization with cancer promoting actions. Oncogenesis, 2020, 9, 69.	4.9	9
12	257: The expression of integrin αVβ3 in normal and accreta placenta. American Journal of Obstetrics and Gynecology, 2020, 222, S176-S177.	1.3	0
13	Thyroid Hormones and Cancer: A Comprehensive Review of Preclinical and Clinical Studies. Frontiers in Endocrinology, 2019, 10, 59.	3.5	123
14	Targeting the Achilles' heel of cancer cells via integrin-mediated delivery of ROS-generating dihydrolipoamide dehydrogenase. Oncogene, 2019, 38, 5050-5061.	5.9	28
15	Editorial: Non Genomic Actions of Thyroid Hormones in Cancer. Frontiers in Endocrinology, 2019, 10, 847.	3.5	15
16	Chemical and thyroid hormone profile of the bone marrow interstitial fluid in hematologic disorders and patients without primary hematologic disorders. Hematological Oncology, 2018, 36, 445-450.	1.7	2

17	The Interplay Between Epithelial-Mesenchymal Transition (EMT) and the Thyroid Hormones-αvβ3 Axis in Ovarian Cancer. Hormones and Cancer, 2018, 9, 22-32.	4.9	29
18	RGD-modified dihydrolipoamide dehydrogenase conjugated to titanium dioxide nanoparticles – switchable integrin-targeted photodynamic treatment of melanoma cells. RSC Advances, 2018,	3.6	19

chableintegrin-targeted photodynamic treatment of melanoma cells. RSC Advances, 2018, 3.68,9112-9119.

#	Article	IF	CITATIONS
19	The induction of myeloma cell death and DNA damage by tetrac, a thyroid hormone derivative. Endocrine-Related Cancer, 2018, 25, 21-34.	3.1	10
20	Molecular insights into the transcriptional regulatory role of thyroid hormones in ovarian cancer. Molecular Carcinogenesis, 2018, 57, 97-105.	2.7	7
21	Contributions of Thyroid Hormone to Cancer Metastasis. Biomedicines, 2018, 6, 89.	3.2	39
22	Tetrac Delayed the Onset of Ocular Melanoma in an Orthotopic Mouse Model. Frontiers in Endocrinology, 2018, 9, 775.	3.5	9
23	Thyroid hormones derivatives reduce proliferation and induce cell death and DNA damage in ovarian cancer. Scientific Reports, 2017, 7, 16475.	3.3	27
24	The anti-leukemic and lipid lowering effects of imatinib are not hindered by statins in CML: a retrospective clinical study andin vitroassessment of lipid-genes transcription. Leukemia and Lymphoma, 2017, 58, 1172-1177.	1.3	5
25	Toward the development of a novel non-RGD cyclic peptide drug conjugate for treatment of human metastatic melanoma. Oncotarget, 2017, 8, 757-768.	1.8	29
26	The thyroid hormone-αvl²3 integrin axis in ovarian cancer: regulation of gene transcription and MAPK-dependent proliferation. Oncogene, 2016, 35, 1977-1987.	5.9	70
27	The double benefit of Spalax p53: surviving underground hypoxia while defying lung cancer cells in vitro via autophagy and caspase-dependent cell death. Oncotarget, 2016, 7, 63242-63251.	1.8	8
28	Incidence and Expression of Circulating Cell Free p53-Related Genes in Acute Myocardial Infarction Patients. Journal of Atherosclerosis and Thrombosis, 2015, 22, 981-998.	2.0	5
29	Relevance of the thyroid hormones–αvβ3 pathway in primary myeloma bone marrow cells and to bortezomib action. Leukemia and Lymphoma, 2015, 56, 1107-1114.	1.3	26
30	Medically Induced Euthyroid Hypothyroxinemia May Extend Survival in Compassionate Need Cancer Patients: An Observational Study. Oncologist, 2015, 20, 72-76.	3.7	75
31	Low thyroid hormone levels improve survival in murine model for ocular melanoma. Oncotarget, 2015, 6, 11038-11046.	1.8	34
32	Abstract A17: Non-RGD-based strategies to target the thyroid hormone receptor-integrin $\hat{I}\pm v\hat{I}^2$ 3: Lessons from myeloma cells , 2015, , .		0
33	Nanotetrac targets integrin αvβ3 on tumor cells to disorder cell defense pathways and block angiogenesis. OncoTargets and Therapy, 2014, 7, 1619.	2.0	40
34	They live in the land down under: thyroid function and basal metabolic rate in the <i>Blind Mole Rat, Spalax</i> . Endocrine Research, 2014, 39, 80-85.	1.2	7
35	Atrophic thyroid follicles and inner ear defects reminiscent of cochlear hypothyroidism in Slc26a4-related deafness. Mammalian Genome, 2014, 25, 304-316.	2.2	16
36	Cancer Cell Gene Expression Modulated from Plasma Membrane Integrin αvβ3 by Thyroid Hormone and Nanoparticulate Tetrac. Frontiers in Endocrinology, 2014, 5, 240.	3.5	91

#	Article	IF	CITATIONS
37	Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via αvβ3 integrin in myeloma cells. Oncotarget, 2014, 5, 6312-6322.	1.8	61
38	Long-term response in high-grade optic glioma treated with medically induced hypothyroidism and carboplatin. Anti-Cancer Drugs, 2013, 24, 315-323.	1.4	29
39	Re: Thyroid Dysfunction from Antineoplastic Agents. Journal of the National Cancer Institute, 2012, 104, 422-423.	6.3	4
40	Cell Free Expression of hif1α and p21 in Maternal Peripheral Blood as a Marker for Preeclampsia and Fetal Growth Restriction. PLoS ONE, 2012, 7, e37273.	2.5	29
41	Integrin-Mediated Actions of Thyroid Hormone Analogues on Tumor Cell Chemosensitivity, Integrin-Growth Factor Receptor Crosstalk and Inflammatory Gene Expression. Cancer and Clinical Oncology, 2012, 1, .	0.2	14
42	Alteration of lipids and the transcription of lipid-related genes in myelodysplastic syndromes via a TP53-related pathway. Experimental Hematology, 2012, 40, 540-547.e1.	0.4	7
43	Triiodothyronine [T3]-induced hypothyroxinemia: Response and survival in a compassionate care cancer patient population Journal of Clinical Oncology, 2012, 30, e19573-e19573.	1.6	1
44	Thyroid Hormone Is a MAPK-Dependent Growth Factor for Human Myeloma Cells Acting via αvβ3 Integrin. Molecular Cancer Research, 2011, 9, 1385-1394.	3.4	50
45	Thyroid Hormones Antagonize and Tetrac, a Deaminated T4 Analog, Sensitizes Bortezomib Action in Multiple Myeloma Cells. Blood, 2011, 118, 2867-2867.	1.4	0
46	Thyroid hormones and cancer: clinical studies of hypothyroidism in oncology. Current Opinion in Endocrinology, Diabetes and Obesity, 2010, 17, 432-436.	2.3	73
47	apoB and apobec1, two genes key to lipid metabolism, are transcriptionally regulated by p53. Cell Cycle, 2010, 9, 3785-3794.	2.6	32
48	The expression of p53-target genes in the hypoxia-tolerant subterranean mole-rat is hypoxia-dependent and similar to expression patterns in solid tumors. Cell Cycle, 2010, 9, 3367-3372.	2.6	16
49	Blocking Thyroid Hormones Induced MAPK Activation -Novel Target for Therapy In Myeloma. Blood, 2010, 116, 2964-2964.	1.4	0
50	apoB and apobec1, two genes key to lipid metabolism, are transcriptionally regulated by p53. Cell Cycle, 2010, 9, 3761-70.	2.6	16
51	Novel Association Between Thyroid Hormones and Multiple Myeloma Cell Proliferation: a MAPK Dependent Activity Blood, 2009, 114, 2836-2836.	1.4	1
52	The presence of a single PML-RARA isoform lacking exon 5 in FISH-negative APL samples. Leukemia, 2008, 22, 200-203.	7.2	5
53	Imatinib Mesylate Affects the Expression of Lipid Metabolism Genes in K562, a Chronic Myeloid Leukemia Cell Line. Blood, 2008, 112, 4238-4238.	1.4	0
54	NAP and ADNF-9 Protect Normal and Downs Syndrome Cortical Neurons from Oxidative Damage and Apoptosis. Current Pharmaceutical Design, 2007, 13, 1091-1098.	1.9	46

#	Article	IF	CITATIONS
55	Apaf1 in Chronic Myelogenous Leukemia (CML) Progression: Reduced Apaf1 Expression is Correlated with a H179R p53 Mutation During Clinical Blast Crisis. Cell Cycle, 2007, 6, 589-594.	2.6	10
56	P53 in blind subterranean mole rats – loss-of-function versus gain-of-function activities on newly cloned Spalax target genes. Oncogene, 2007, 26, 2507-2512.	5.9	43
57	High-throughput, sensitive and quantitative assay for the detection of BCR-ABL kinase domain mutations. Leukemia, 2007, 21, 1318-1321.	7.2	39
58	Hepcidin, a key regulator of iron metabolism, is transcriptionally activated by p53. British Journal of Haematology, 2007, 138, 253-262.	2.5	81
59	The disappearance of two alleles of <i>JAK2</i> V617F from peripheral blood of a polycythaemia vera patient correlates with transformation into myelofibrosis. British Journal of Haematology, 2007, 138, 822-823.	2.5	0
60	p53: A Key Player in Tumoral and Evolutionary Adaptation: A Lesson from the Israeli Blind Subterranean Mole Rat. Cell Cycle, 2005, 4, 368-372.	2.6	26
61	Evolution of p53 in hypoxia-stressed Spalax mimics human tumor mutation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12236-12241.	7.1	107
62	Assessment of the response to imatinib in chronic myeloid leukemia patients – comparison between the FISH, multiplex and RTâ€₽CR methods. European Journal of Haematology, 2004, 73, 243-250.	2.2	23
63	The neuroprotective peptide NAP inhibits the aggregation of the beta-amyloid peptide. Peptides, 2003, 24, 1413-1423.	2.4	84
64	Vasoactive intestinal peptide and related molecules induce nitrite accumulation in the extracellular milieu of rat cerebral cortical cultures. Neuroscience Letters, 2001, 307, 167-170.	2.1	36
65	Mapping the active site in vasoactive intestinal peptide to a core of four amino acids: Neuroprotective drug design. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4143-4148.	7.1	57
66	SNV, a lipophilic superactive VIP analog, acts through cGMP to promote neuronal survival. Peptides, 1999, 20, 629-633.	2.4	22
67	Identification of VIP/PACAP receptors on rat astrocytes using antisense oligodeoxynucleotides. Journal of Molecular Neuroscience, 1997, 9, 211-222.	2.3	71