Osnat Ashur-Fabian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1736556/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /O	verlock 10) Tf 50 742
2	Thyroid Hormones and Cancer: A Comprehensive Review of Preclinical and Clinical Studies. Frontiers in Endocrinology, 2019, 10, 59.	3.5	123
3	Evolution of p53 in hypoxia-stressed Spalax mimics human tumor mutation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12236-12241.	7.1	107
4	Cancer Cell Gene Expression Modulated from Plasma Membrane Integrin αvβ3 by Thyroid Hormone and Nanoparticulate Tetrac. Frontiers in Endocrinology, 2014, 5, 240.	3.5	91
5	The neuroprotective peptide NAP inhibits the aggregation of the beta-amyloid peptide. Peptides, 2003, 24, 1413-1423.	2.4	84
6	Hepcidin, a key regulator of iron metabolism, is transcriptionally activated by p53. British Journal of Haematology, 2007, 138, 253-262.	2.5	81
7	Medically Induced Euthyroid Hypothyroxinemia May Extend Survival in Compassionate Need Cancer Patients: An Observational Study. Oncologist, 2015, 20, 72-76.	3.7	75
8	Thyroid hormones and cancer: clinical studies of hypothyroidism in oncology. Current Opinion in Endocrinology, Diabetes and Obesity, 2010, 17, 432-436.	2.3	73
9	Identification of VIP/PACAP receptors on rat astrocytes using antisense oligodeoxynucleotides. Journal of Molecular Neuroscience, 1997, 9, 211-222.	2.3	71
10	The thyroid hormone-αvβ3 integrin axis in ovarian cancer: regulation of gene transcription and MAPK-dependent proliferation. Oncogene, 2016, 35, 1977-1987.	5.9	70
11	Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via αvβ3 integrin in myeloma cells. Oncotarget, 2014, 5, 6312-6322.	1.8	61
12	Mapping the active site in vasoactive intestinal peptide to a core of four amino acids: Neuroprotective drug design. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4143-4148.	7.1	57
13	Thyroid Hormone Is a MAPK-Dependent Growth Factor for Human Myeloma Cells Acting via αvβ3 Integrin. Molecular Cancer Research, 2011, 9, 1385-1394.	3.4	50
14	NAP and ADNF-9 Protect Normal and Downs Syndrome Cortical Neurons from Oxidative Damage and Apoptosis. Current Pharmaceutical Design, 2007, 13, 1091-1098.	1.9	46
15	P53 in blind subterranean mole rats – loss-of-function versus gain-of-function activities on newly cloned Spalax target genes. Oncogene, 2007, 26, 2507-2512.	5.9	43
16	Nanotetrac targets integrin αvβ3 on tumor cells to disorder cell defense pathways and block angiogenesis. OncoTargets and Therapy, 2014, 7, 1619.	2.0	40
17	High-throughput, sensitive and quantitative assay for the detection of BCR-ABL kinase domain mutations. Leukemia, 2007, 21, 1318-1321.	7.2	39
18	Contributions of Thyroid Hormone to Cancer Metastasis. Biomedicines, 2018, 6, 89.	3.2	39

Osnat Ashur-Fabian

#	Article	IF	CITATIONS
19	Vasoactive intestinal peptide and related molecules induce nitrite accumulation in the extracellular milieu of rat cerebral cortical cultures. Neuroscience Letters, 2001, 307, 167-170.	2.1	36
20	Low thyroid hormone levels improve survival in murine model for ocular melanoma. Oncotarget, 2015, 6, 11038-11046.	1.8	34
21	apoB and apobec1, two genes key to lipid metabolism, are transcriptionally regulated by p53. Cell Cycle, 2010, 9, 3785-3794.	2.6	32
22	Cell Free Expression of hif1 $\hat{l}\pm$ and p21 in Maternal Peripheral Blood as a Marker for Preeclampsia and Fetal Growth Restriction. PLoS ONE, 2012, 7, e37273.	2.5	29
23	Long-term response in high-grade optic glioma treated with medically induced hypothyroidism and carboplatin. Anti-Cancer Drugs, 2013, 24, 315-323.	1.4	29
24	The Interplay Between Epithelial-Mesenchymal Transition (EMT) and the Thyroid Hormones-αvβ3 Axis in Ovarian Cancer. Hormones and Cancer, 2018, 9, 22-32.	4.9	29
25	Toward the development of a novel non-RGD cyclic peptide drug conjugate for treatment of human metastatic melanoma. Oncotarget, 2017, 8, 757-768.	1.8	29
26	Targeting the Achilles' heel of cancer cells via integrin-mediated delivery of ROS-generating dihydrolipoamide dehydrogenase. Oncogene, 2019, 38, 5050-5061.	5.9	28
27	Thyroid hormones derivatives reduce proliferation and induce cell death and DNA damage in ovarian cancer. Scientific Reports, 2017, 7, 16475.	3.3	27
28	p53: A Key Player in Tumoral and Evolutionary Adaptation: A Lesson from the Israeli Blind Subterranean Mole Rat. Cell Cycle, 2005, 4, 368-372.	2.6	26
29	Relevance of the thyroid hormones–αvβ3 pathway in primary myeloma bone marrow cells and to bortezomib action. Leukemia and Lymphoma, 2015, 56, 1107-1114.	1.3	26
30	Assessment of the response to imatinib in chronic myeloid leukemia patients – comparison between the FISH, multiplex and RTâ€PCR methods. European Journal of Haematology, 2004, 73, 243-250.	2.2	23
31	SNV, a lipophilic superactive VIP analog, acts through cGMP to promote neuronal survival. Peptides, 1999, 20, 629-633.	2.4	22
32	RGD-modified dihydrolipoamide dehydrogenase conjugated to titanium dioxide nanoparticles – switchable integrin-targeted photodynamic treatment of melanoma cells. RSC Advances, 2018, 8, 9112-9119.	3.6	19
33	The expression of p53-target genes in the hypoxia-tolerant subterranean mole-rat is hypoxia-dependent and similar to expression patterns in solid tumors. Cell Cycle, 2010, 9, 3367-3372.	2.6	16
34	Atrophic thyroid follicles and inner ear defects reminiscent of cochlear hypothyroidism in Slc26a4-related deafness. Mammalian Genome, 2014, 25, 304-316.	2.2	16
35	apoB and apobec1, two genes key to lipid metabolism, are transcriptionally regulated by p53. Cell Cycle, 2010, 9, 3761-70.	2.6	16
36	Editorial: Non Genomic Actions of Thyroid Hormones in Cancer. Frontiers in Endocrinology, 2019, 10, 847.	3.5	15

#	Article	IF	CITATIONS
37	Integrin-Mediated Actions of Thyroid Hormone Analogues on Tumor Cell Chemosensitivity, Integrin-Growth Factor Receptor Crosstalk and Inflammatory Gene Expression. Cancer and Clinical Oncology, 2012, 1, .	0.2	14
38	Apaf1 in Chronic Myelogenous Leukemia (CML) Progression: Reduced Apaf1 Expression is Correlated with a H179R p53 Mutation During Clinical Blast Crisis. Cell Cycle, 2007, 6, 589-594.	2.6	10
39	The induction of myeloma cell death and DNA damage by tetrac, a thyroid hormone derivative. Endocrine-Related Cancer, 2018, 25, 21-34.	3.1	10
40	DIO3, the thyroid hormone inactivating enzyme, promotes tumorigenesis and metabolic reprogramming in high grade serous ovarian cancer. Cancer Letters, 2021, 501, 224-233.	7.2	10
41	Tetrac Delayed the Onset of Ocular Melanoma in an Orthotopic Mouse Model. Frontiers in Endocrinology, 2018, 9, 775.	3.5	9
42	The identification of nuclear αvβ3 integrin in ovarian cancer: non-paradigmal localization with cancer promoting actions. Oncogenesis, 2020, 9, 69.	4.9	9
43	Opposing effects of thyroid hormones on cancer risk: a population-based study. European Journal of Endocrinology, 2021, 184, 477-486.	3.7	9
44	Pre-diagnosis thyroid hormone dysfunction is associated with cancer mortality. Endocrine-Related Cancer, 2021, 28, 705-713.	3.1	8
45	The double benefit of Spalax p53: surviving underground hypoxia while defying lung cancer cells in vitro via autophagy and caspase-dependent cell death. Oncotarget, 2016, 7, 63242-63251.	1.8	8
46	Alteration of lipids and the transcription of lipid-related genes in myelodysplastic syndromes via a TP53-related pathway. Experimental Hematology, 2012, 40, 540-547.e1.	0.4	7
47	They live in the land down under: thyroid function and basal metabolic rate in the <i>Blind Mole Rat, Spalax</i> . Endocrine Research, 2014, 39, 80-85.	1.2	7
48	Molecular insights into the transcriptional regulatory role of thyroid hormones in ovarian cancer. Molecular Carcinogenesis, 2018, 57, 97-105.	2.7	7
49	Targeting the DIO3 enzyme using first-in-class inhibitors effectively suppresses tumor growth: a new paradigm in ovarian cancer treatment. Oncogene, 2021, 40, 6248-6257.	5.9	7
50	Dihydrolipoamide dehydrogenase moonlighting activity as a <scp>DNA</scp> chelating agent. Proteins: Structure, Function and Bioinformatics, 2021, 89, 21-28.	2.6	6
51	The presence of a single PML-RARA isoform lacking exon 5 in FISH-negative APL samples. Leukemia, 2008, 22, 200-203.	7.2	5
52	Incidence and Expression of Circulating Cell Free p53-Related Genes in Acute Myocardial Infarction Patients. Journal of Atherosclerosis and Thrombosis, 2015, 22, 981-998.	2.0	5
53	The anti-leukemic and lipid lowering effects of imatinib are not hindered by statins in CML: a retrospective clinical study andin vitroassessment of lipid-genes transcription. Leukemia and Lymphoma, 2017, 58, 1172-1177.	1.3	5
54	Enhanced expression of αVβ3 integrin in villus and extravillous trophoblasts of placenta accreta. Archives of Gynecology and Obstetrics, 2021, 303, 1175-1183.	1.7	5

Osnat Ashur-Fabian

#	Article	IF	CITATIONS
55	Re: Thyroid Dysfunction from Antineoplastic Agents. Journal of the National Cancer Institute, 2012, 104, 422-423.	6.3	4
56	αvβ3 Integrin Expression and Mitogenic Effects by Thyroid Hormones in Chronic Lymphocytic Leukemia. Journal of Clinical Medicine, 2021, 10, 1766.	2.4	4
57	Three-Dimensional Modeling of Thyroid Hormone Metabolites Binding to the Cancer-Relevant αvβ3 Integrin: In-Silico Based Study. Frontiers in Endocrinology, 2022, 13, .	3.5	4
58	Nuclear αvβ3 integrin expression, post translational modifications and regulation in hematological malignancies. Hematological Oncology, 2022, 40, 73-82.	1.7	3
59	Chemical and thyroid hormone profile of the bone marrow interstitial fluid in hematologic disorders and patients without primary hematologic disorders. Hematological Oncology, 2018, 36, 445-450.	1.7	2
60	Novel Association Between Thyroid Hormones and Multiple Myeloma Cell Proliferation: a MAPK Dependent Activity Blood, 2009, 114, 2836-2836.	1.4	1
61	Triiodothyronine [T3]-induced hypothyroxinemia: Response and survival in a compassionate care cancer patient population Journal of Clinical Oncology, 2012, 30, e19573-e19573.	1.6	1
62	The disappearance of two alleles of <i>JAK2</i> V617F from peripheral blood of a polycythaemia vera patient correlates with transformation into myelofibrosis. British Journal of Haematology, 2007, 138, 822-823.	2.5	0
63	257: The expression of integrin αVβ3 in normal and accreta placenta. American Journal of Obstetrics and Gynecology, 2020, 222, S176-S177.	1.3	0
64	Imatinib Mesylate Affects the Expression of Lipid Metabolism Genes in K562, a Chronic Myeloid Leukemia Cell Line. Blood, 2008, 112, 4238-4238.	1.4	0
65	Blocking Thyroid Hormones Induced MAPK Activation -Novel Target for Therapy In Myeloma. Blood, 2010, 116, 2964-2964.	1.4	0
66	Thyroid Hormones Antagonize and Tetrac, a Deaminated T4 Analog, Sensitizes Bortezomib Action in Multiple Myeloma Cells. Blood, 2011, 118, 2867-2867.	1.4	0
67	Abstract A17: Non-RGD-based strategies to target the thyroid hormone receptor-integrin $\hat{I}\pm v\hat{I}^2$ 3: Lessons from myeloma cells , 2015, , .		0