
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1735868/publications.pdf Version: 2024-02-01

DENC MANC

#	Article	IF	CITATIONS
1	Nanotechnology: A New Opportunity in Plant Sciences. Trends in Plant Science, 2016, 21, 699-712.	8.8	690
2	Soil and the intensification of agriculture for global food security. Environment International, 2019, 132, 105078.	10.0	617
3	Cadmium contamination in agricultural soils of China and the impact on food safety. Environmental Pollution, 2019, 249, 1038-1048.	7.5	395
4	Arsenic and cadmium accumulation in rice and mitigation strategies. Plant and Soil, 2020, 446, 1-21.	3.7	327
5	Fate of ZnO Nanoparticles in Soils and Cowpea (Vigna unguiculata). Environmental Science & Technology, 2013, 47, 13822-13830.	10.0	271
6	Iron–Manganese (Oxyhydro)oxides, Rather than Oxidation of Sulfides, Determine Mobilization of Cd during Soil Drainage in Paddy Soil Systems. Environmental Science & Technology, 2019, 53, 2500-2508.	10.0	236
7	Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, southern China. Science of the Total Environment, 2018, 639, 271-277.	8.0	231
8	Identification of the Primary Lesion of Toxic Aluminum in Plant Roots Â. Plant Physiology, 2015, 167, 1402-1411.	4.8	194
9	Effective methods to reduce cadmium accumulation in rice grain. Chemosphere, 2018, 207, 699-707.	8.2	170
10	A lossâ€ofâ€function allele of <i>OsHMA3</i> associated with high cadmium accumulation in shoots and grain of <i>Japonica</i> rice cultivars. Plant, Cell and Environment, 2016, 39, 1941-1954.	5.7	168
11	Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice. Environmental Pollution, 2018, 238, 482-490.	7.5	148
12	Control of arsenic mobilization in paddy soils by manganese and iron oxides. Environmental Pollution, 2017, 231, 37-47.	7.5	145
13	Synchrotron-Based X-Ray Fluorescence Microscopy as a Technique for Imaging of Elements in Plants. Plant Physiology, 2018, 178, 507-523.	4.8	134
14	Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. Molecular Plant, 2022, 15, 27-44.	8.3	131
15	Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn. Environment International, 2011, 37, 1098-1104.	10.0	115
16	Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environmental Science: Nano, 2019, 6, 3513-3524.	4.3	99
17	Silver sulfide nanoparticles (Ag ₂ S-NPs) are taken up by plants and are phytotoxic. Nanotoxicology, 2015, 9, 1041-1049.	3.0	96
18	Silver Nanoparticles Entering Soils via the Wastewater–Sludge–Soil Pathway Pose Low Risk to Plants but Elevated Cl Concentrations Increase Ag Bioavailability. Environmental Science & Technology, 2016, 50, 8274-8281.	10.0	92

#	Article	IF	CITATIONS
19	Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana. Journal of Hazardous Materials, 2017, 322, 292-300.	12.4	90
20	Plasma Membrane Surface Potential: Dual Effects upon Ion Uptake and Toxicity. Plant Physiology, 2011, 155, 808-820.	4.8	85
21	Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants. Environmental Science: Nano, 2017, 4, 448-460.	4.3	85
22	Laterally resolved speciation of arsenic in roots of wheat and rice using fluorescenceâ€ <scp>XANES</scp> imaging. New Phytologist, 2014, 201, 1251-1262.	7.3	81
23	Absorption of foliar-applied Zn in sunflower (<i>Helianthus annuus</i>): importance of the cuticle, stomata and trichomes. Annals of Botany, 2019, 123, 57-68.	2.9	81
24	Absorption of foliar-applied Zn fertilizers by trichomes in soybean and tomato. Journal of Experimental Botany, 2018, 69, 2717-2729.	4.8	80
25	Cadmium accumulation is enhanced by ammonium compared to nitrate in two hyperaccumulators, without affecting speciation. Journal of Experimental Botany, 2016, 67, 5041-5050.	4.8	78
26	Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain. Journal of Experimental Botany, 2020, 71, 5705-5715.	4.8	75
27	The surface charge density of plant cell membranes (σ): an attempt to resolve conflicting values for intrinsic σ. Journal of Experimental Botany, 2010, 61, 2507-2518.	4.8	70
28	Kinetics and nature of aluminium rhizotoxic effects: a review. Journal of Experimental Botany, 2016, 67, 4451-4467.	4.8	65
29	Cell Membrane Surface Potential (<i>ï</i> Â0) Plays a Dominant Role in the Phytotoxicity of Copper and Arsenate. Plant Physiology, 2008, 148, 2134-2143.	4.8	64
30	Free Radicals Produced from the Oxidation of Ferrous Sulfides Promote the Remobilization of Cadmium in Paddy Soils During Drainage. Environmental Science & Technology, 2021, 55, 9845-9853.	10.0	63
31	Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Environmental Pollution, 2019, 251, 952-960.	7.5	61
32	The Voltaic Effect as a Novel Mechanism Controlling the Remobilization of Cadmium in Paddy Soils during Drainage. Environmental Science & Technology, 2021, 55, 1750-1758.	10.0	59
33	Manganese distribution and speciation help to explain the effects of silicate and phosphate on manganese toxicity in four crop species. New Phytologist, 2018, 217, 1146-1160.	7.3	58
34	Alleviation of Cu and Pb Rhizotoxicities in Cowpea (<i>Vigna unguiculata</i>) as Related to Ion Activities at Root-Cell Plasma Membrane Surface. Environmental Science & Technology, 2011, 45, 4966-4973.	10.0	57
35	The transformation and fate of silver nanoparticles in paddy soil: effects of soil organic matter and redox conditions. Environmental Science: Nano, 2017, 4, 919-928.	4.3	55
36	Bioavailability and movement of hydroxyapatite nanoparticles (HA-NPs) applied as a phosphorus fertiliser in soils. Environmental Science: Nano, 2018, 5, 2888-2898.	4.3	55

#	Article	IF	CITATIONS
37	The within-field spatial variation in rice grain Cd concentration is determined by soil redox status and pH during grain filling. Environmental Pollution, 2020, 261, 114151.	7.5	55
38	Effect of Complexation on the Accumulation and Elimination Kinetics of Cadmium and Ciprofloxacin in the Earthworm Eisenia fetida. Environmental Science & Technology, 2011, 45, 4339-4345.	10.0	51
39	Tailoring hydroxyapatite nanoparticles to increase their efficiency as phosphorus fertilisers in soils. Geoderma, 2018, 323, 116-125.	5.1	50
40	Soil Organic Carbon Stabilization: Mapping Carbon Speciation from Intact Microaggregates. Environmental Science & Technology, 2018, 52, 12275-12284.	10.0	50
41	Engineering Crops without Genome Integration Using Nanotechnology. Trends in Plant Science, 2019, 24, 574-577.	8.8	48
42	Active Iron Phases Regulate the Abiotic Transformation of Organic Carbon during Redox Fluctuation Cycles of Paddy Soil. Environmental Science & amp; Technology, 2021, 55, 14281-14293.	10.0	48
43	The relative contributions of root uptake and remobilization to the loading of Cd and As into rice grains: Implications in simultaneously controlling grain Cd and As accumulation using a segmented water management strategy. Environmental Pollution, 2022, 293, 118497.	7.5	47
44	Subcellular Cd distribution and its correlation with antioxidant enzymatic activities in wheat (Triticum aestivum) roots. Ecotoxicology and Environmental Safety, 2011, 74, 874-881.	6.0	46
45	Synchrotronâ€based Xâ€Ray Approaches for Examining Toxic Trace Metal(loid)s in Soil–Plant Systems. Journal of Environmental Quality, 2017, 46, 1175-1189.	2.0	46
46	Chemical Speciation and Distribution of Cadmium in Rice Grain and Implications for Bioavailability to Humans. Environmental Science & amp; Technology, 2020, 54, 12072-12080.	10.0	46
47	Microbe mediated immobilization of arsenic in the rice rhizosphere after incorporation of silica impregnated biochar composites. Journal of Hazardous Materials, 2020, 398, 123096.	12.4	46
48	Examination of the Distribution of Arsenic in Hydrated and Fresh Cowpea Roots Using Two- and Three-Dimensional Techniques Â. Plant Physiology, 2012, 159, 1149-1158.	4.8	43
49	Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice. Journal of Experimental Botany, 2015, 66, 4795-4806.	4.8	41
50	High-Affinity Sulfate Transporter Sultr1;2 Is a Major Transporter for Cr(VI) Uptake in Plants. Environmental Science & Technology, 2021, 55, 1576-1584.	10.0	41
51	Dimethylarsinic acid is the causal agent inducing rice straighthead disease. Journal of Experimental Botany, 2020, 71, 5631-5644.	4.8	40
52	Methods to Visualize Elements in Plants. Plant Physiology, 2020, 182, 1869-1882.	4.8	40
53	Modeling Rhizotoxicity and Uptake of Zn and Co Singly and in Binary Mixture in Wheat in Terms of the Cell Membrane Surface Electrical Potential. Environmental Science & Technology, 2013, 47, 2831-2838.	10.0	39
54	Risk of Silver Transfer from Soil to the Food Chain Is Low after Long-Term (20 Years) Field Applications of Sewage Sludge. Environmental Science & Technology, 2018, 52, 4901-4909.	10.0	39

#	Article	IF	CITATIONS
55	Quantitative determination of metal and metalloid spatial distribution in hydrated and fresh roots of cowpea using synchrotron-based X-ray fluorescence microscopy. Science of the Total Environment, 2013, 463-464, 131-139.	8.0	38
56	Effects of graphene oxide and graphite on soil bacterial and fungal diversity. Science of the Total Environment, 2019, 671, 140-148.	8.0	38
57	Sulfate addition and rising temperature promote arsenic methylation and the formation of methylated thioarsenates in paddy soils. Soil Biology and Biochemistry, 2021, 154, 108129.	8.8	38
58	Effects of Zn-complexes on zinc uptake by wheat (Triticum aestivum) roots: a comprehensive consideration of physical, chemical and biological processes on biouptake. Plant and Soil, 2009, 316, 177-192.	3.7	37
59	Dietary cadmium exposure, risks to human health and mitigation strategies. Critical Reviews in Environmental Science and Technology, 2023, 53, 939-963.	12.8	37
60	Subcellular distribution of Cd and Pb in earthworm Eisenia fetida as affected by Ca2+ ions and Cd–Pb interaction. Ecotoxicology and Environmental Safety, 2008, 71, 632-637.	6.0	36
61	Effects of changes in leaf properties mediated by methyl jasmonate (MeJA) on foliar absorption of Zn, Mn and Fe. Annals of Botany, 2017, 120, 405-415.	2.9	36
62	Effects of methyl jasmonate on plant growth and leaf properties. Journal of Plant Nutrition and Soil Science, 2018, 181, 409-418.	1.9	36
63	Increased arsenic mobilization in the rice rhizosphere is mediated by iron-reducing bacteria. Environmental Pollution, 2020, 263, 114561.	7.5	35
64	Kinetics of Cadmium Uptake and Subcellular Partitioning in the Earthworm Eisenia fetida Exposed to Cadmium-Contaminated Soil. Archives of Environmental Contamination and Toxicology, 2009, 57, 718-724.	4.1	33
65	Toxicity of metals to roots of cowpea in relation to their binding strength. Environmental Toxicology and Chemistry, 2011, 30, 1827-1833.	4.3	32
66	Assessing the Impact of Iron-based Nanoparticles on pH, Dissolved Organic Carbon, and Nutrient Availability in Soils. Soil and Sediment Contamination, 2012, 21, 101-114.	1.9	32
67	Effect of Major Cations and pH on the Acute Toxicity of Cadmium to the Earthworm Eisenia fetida: Implications for the Biotic Ligand Model Approach. Archives of Environmental Contamination and Toxicology, 2008, 55, 70-77.	4.1	31
68	Evaluating mechanisms for plant-ion (Ca2+, Cu2+, Cd2+ or Ni2+) interactions and their effectiveness on rhizotoxicity. Plant and Soil, 2010, 334, 277-288.	3.7	30
69	Temperature affects cadmium-induced phytotoxicity involved in subcellular cadmium distribution and oxidative stress in wheat roots. Ecotoxicology and Environmental Safety, 2011, 74, 2029-2035.	6.0	30
70	A web-accessible computer program for calculating electrical potentials and ion activities at cell-membrane surfaces. Plant and Soil, 2014, 375, 35-46.	3.7	30
71	Development of an electrostatic model predicting copper toxicity to plants. Journal of Experimental Botany, 2012, 63, 659-668.	4.8	29
72	New insights of the bacterial response to exposure of differently sized silver nanomaterials. Water Research, 2020, 169, 115205.	11.3	29

#	Article	IF	CITATIONS
73	Separating multiple, shortâ€ŧerm, deleterious effects of saline solutions on the growth of cowpea seedlings. New Phytologist, 2011, 189, 1110-1121.	7.3	28
74	Stable isotope fractionation of cadmium in the soil-rice-human continuum. Science of the Total Environment, 2021, 761, 143262.	8.0	28
75	A QICAR approach for quantifying binding constants for metal–ligand complexes. Ecotoxicology and Environmental Safety, 2011, 74, 1036-1042.	6.0	27
76	The rhizotoxicity of metal cations is related to their strength of binding to hard ligands. Environmental Toxicology and Chemistry, 2014, 33, 268-277.	4.3	27
77	Impact of land use change and soil type on total phosphorus and its fractions in soil aggregates. Land Degradation and Development, 2020, 31, 828-841.	3.9	27
78	Cadmium speciation and release kinetics in a paddy soil as affected by soil amendments and flooding-draining cycle. Environmental Pollution, 2021, 268, 115944.	7.5	27
79	Widespread Occurrence of the Highly Toxic Dimethylated Monothioarsenate (DMMTA) in Rice Globally. Environmental Science & Technology, 2022, 56, 3575-3586.	10.0	27
80	Aluminum Complexation with Malate within the Root Apoplast Differs between Aluminum Resistant and Sensitive Wheat Lines. Frontiers in Plant Science, 2017, 8, 1377.	3.6	26
81	Solid/solution Cu fractionations/speciation of a Cu contaminated soil after pilot-scale electrokinetic remediation and their relationships with soil microbial and enzyme activities. Environmental Pollution, 2009, 157, 2203-2208.	7.5	25
82	Surface Electrical Potentials of Root Cell Plasma Membranes: Implications for Ion Interactions, Rhizotoxicity, and Uptake. International Journal of Molecular Sciences, 2014, 15, 22661-22677.	4.1	25
83	Ferric minerals and organic matter change arsenic speciation in copper mine tailings. Environmental Pollution, 2016, 218, 835-843.	7.5	25
84	Engineered silver nanoparticles in terrestrial environments: a meta-analysis shows that the overall environmental risk is small. Environmental Science: Nano, 2018, 5, 2531-2544.	4.3	25
85	Producing Cd-safe rice grains in moderately and seriously Cd-contaminated paddy soils. Chemosphere, 2021, 267, 128893.	8.2	25
86	The role of soil in defining planetary boundaries and the safe operating space for humanity. Environment International, 2021, 146, 106245.	10.0	25
87	Dynamics of Dimethylated Monothioarsenate (DMMTA) in Paddy Soils and Its Accumulation in Rice Grains. Environmental Science & Technology, 2021, 55, 8665-8674.	10.0	25
88	Predicting Cd partitioning in spiked soils and bioaccumulation in the earthworm Eisenia fetida. Applied Soil Ecology, 2009, 42, 118-123.	4.3	24
89	Calculated activity of Mn2+ at the outer surface of the root cell plasma membrane governs Mn nutrition of cowpea seedlings. Journal of Experimental Botany, 2011, 62, 3993-4001.	4.8	24
90	<i>In situ</i> analyses of inorganic nutrient distribution in sweetcorn and maize kernels using synchrotron-based X-ray fluorescence microscopy. Annals of Botany, 2019, 123, 543-556.	2.9	24

#	Article	IF	CITATIONS
91	Stable Isotope Fractionation of Metals and Metalloids in Plants: A Review. Frontiers in Plant Science, 2022, 13, 840941.	3.6	24
92	Evaluation of an electrostatic toxicity model for predicting Ni2+ toxicity to barley root elongation in hydroponic cultures and in soils. New Phytologist, 2011, 192, 414-427.	7.3	23
93	Effect of long-term no-tillage and nitrogen fertilization on phosphorus distribution in bulk soil and aggregates of a Vertisol. Soil and Tillage Research, 2021, 205, 104760.	5.6	22
94	Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants. Environmental Science: Nano, 2017, 4, 448-460.	4.3	22
95	Liming and tillering application of manganese alleviates iron manganese plaque reduction and cadmium accumulation in rice (Oryza sativa L.). Journal of Hazardous Materials, 2022, 427, 127897.	12.4	22
96	Distribution and speciation of Mn in hydrated roots of cowpea at levels inhibiting root growth. Physiologia Plantarum, 2013, 147, 453-464.	5.2	21
97	An electrostatic model predicting Cu and Ni toxicity to microbial processes in soils. Soil Biology and Biochemistry, 2013, 57, 720-730.	8.8	21
98	Absorption of foliar applied Zn is decreased in Zn deficient sunflower (Helianthus annuus) due to changes in leaf properties. Plant and Soil, 2018, 433, 309-322.	3.7	21
99	Effects of carbon nanotubes and derivatives of graphene oxide on soil bacterial diversity. Science of the Total Environment, 2019, 682, 356-363.	8.0	21
100	Incorporating bioavailability into toxicity assessment of Cu-Ni, Cu-Cd, and Ni-Cd mixtures with the extended biotic ligand model and the WHAM-F tox approach. Environmental Science and Pollution Research, 2015, 22, 19213-19223.	5.3	20
101	Long-term changes in land use influence phosphorus concentrations, speciation, and cycling within subtropical soils. Geoderma, 2021, 393, 115010.	5.1	20
102	Two-year and multi-site field trials to evaluate soil amendments for controlling cadmium accumulation in rice grain. Environmental Pollution, 2021, 289, 117918.	7.5	20
103	Wastewater Treatment Processing of Silver Nanoparticles Strongly Influences Their Effects on Soil Microbial Diversity. Environmental Science & Technology, 2020, 54, 13538-13547.	10.0	19
104	Uptake pathways and toxicity of Cd and Zn in the earthworm Eisenia fetida. Soil Biology and Biochemistry, 2010, 42, 1045-1050.	8.8	18
105	In Situ Speciation and Distribution of Toxic Selenium in Hydrated Roots of Cowpea. Plant Physiology, 2013, 163, 407-418.	4.8	18
106	Dysfunction of the 4â€coumarate:coenzyme A ligase 4CL4 impacts aluminum resistance and lignin accumulation in rice. Plant Journal, 2020, 104, 1233-1250.	5.7	18
107	Silver Sulfide Nanoparticles Reduce Nitrous Oxide Emissions by Inhibiting Denitrification in the Earthworm Gut. Environmental Science & amp; Technology, 2020, 54, 11146-11154.	10.0	17
108	Effect of cation competition on cadmium uptake from solution by the earthworm <i>Eisenia Fetida</i> . Environmental Toxicology and Chemistry, 2009, 28, 1732-1738.	4.3	15

#	Article	IF	CITATIONS
109	NH4H2PO4-extractable arsenic provides a reliable predictor for arsenic accumulation and speciation in pepper fruits (Capsicum annum L.). Environmental Pollution, 2019, 251, 651-658.	7.5	15
110	Identifying the species of copper that are toxic to plant roots in alkaline nutrient solutions. Plant and Soil, 2012, 361, 317-327.	3.7	14
111	Modelling metal accumulation using humic acid as a surrogate for plant roots. Chemosphere, 2015, 124, 61-69.	8.2	13
112	Biogeochemical Control on the Mobilization of Cd in Soil. Current Pollution Reports, 2021, 7, 194-200.	6.6	12
113	Defining appropriate methods for studying toxicities of trace metals in nutrient solutions. Ecotoxicology and Environmental Safety, 2018, 147, 872-880.	6.0	11
114	Soil amendments with ZnSO4 or MnSO4 are effective at reducing Cd accumulation in rice grain: An application of the voltaic cell principle. Environmental Pollution, 2022, 294, 118650.	7.5	11
115	Evaluating the biotic ligand model for toxicity and the alleviation of toxicity in terms of cell membrane surface potential. Environmental Toxicology and Chemistry, 2010, 29, 1503-1511.	4.3	9
116	Calcium and magnesium enhance arsenate rhizotoxicity and uptake in <i>Triticum aestivum</i> . Environmental Toxicology and Chemistry, 2011, 30, 1642-1648.	4.3	9
117	Soil chloride content influences the response of bacterial but not fungal diversity to silver nanoparticles entering soil via wastewater treatment processing. Environmental Pollution, 2019, 255, 113274.	7.5	9
118	Application of sewage sludge containing environmentally-relevant silver sulfide nanoparticles increases emissions of nitrous oxide in saline soils. Environmental Pollution, 2020, 265, 114807.	7.5	9
119	Delineating ionâ€ion interactions by electrostatic modeling for predicting rhizotoxicity of metal mixtures to lettuce <i>Lactuca sativa</i> . Environmental Toxicology and Chemistry, 2014, 33, 1988-1995.	4.3	8
120	Effect of different nitrogen forms on the toxicity of Zn in wheat seedling root: a modeling analysis. Environmental Science and Pollution Research, 2017, 24, 18896-18906.	5.3	8
121	Evaluating effects of iron on manganese toxicity in soybean and sunflower using synchrotron-based X-ray fluorescence microscopy and X-ray absorption spectroscopy. Metallomics, 2019, 11, 2097-2110.	2.4	8
122	Assessment of the Zn–Co mixtures rhizotoxicity under Ca deficiency: Using two conventional mixture models based on the cell membrane surface potential. Chemosphere, 2014, 112, 232-239.	8.2	7
123	Minimizing experimental artefacts in synchrotron-based X-ray analyses of Fe speciation in tissues of rice plants. Journal of Synchrotron Radiation, 2019, 26, 1272-1279.	2.4	7
124	Variation in cadmium accumulation and speciation within the same population of the hyperaccumulator Noccaea caerulescens grown in a moderately contaminated soil. Plant and Soil, 2022, 475, 379-394.	3.7	7
125	Kinetics of metal toxicity in plant roots and its effects on root morphology. Plant and Soil, 2017, 419, 269-279.	3.7	6
126	Effects of long-term cultivation on phosphorus (P) in five low-input, subtropical Australian soils. Agriculture, Ecosystems and Environment, 2018, 252, 191-199.	5.3	6

#	Article	IF	CITATIONS
127	Release of silver from nanoparticle-based filter paper and the impacts to mouse gut microbiota. Environmental Science: Nano, 2020, 7, 1554-1565.	4.3	5
128	Exploring Key Soil Parameters Relevant to Arsenic and Cadmium Accumulation in Rice Grain in Southern China. Soil Systems, 2022, 6, 36.	2.6	4
129	What role does cell membrane surface potential play in ion-plant interactions. Plant Signaling and Behavior, 2009, 4, 42-43.	2.4	3
130	Kinetics and mechanisms of cowpea root adaptation to changes in solution calcium. Plant and Soil, 2014, 379, 301-314.	3.7	3
131	A novel approach for predicting the uptake and toxicity of metallic and metalloid ions. Plant Signaling and Behavior, 2011, 6, 461-465.	2.4	2
132	Comment on "Graphene oxide regulates the bacterial community and exhibits property changes in soil― by J. Du, X. Hu and Q. Zhou, RSC Advances, 2015, 5 , 27009. RSC Advances, 2016, 6, 51203-51204.	3.6	2
133	Understanding the delayed expression of Al resistance in signal grass (Urochloa decumbens). Annals of Botany, 2020, 125, 841-850.	2.9	2
134	China national food safety standards of cadmium in staple foods: Issues and thinking. Chinese Science Bulletin, 2022, 67, 3252-3260.	0.7	2
135	Translocation of Foliar Absorbed Zn in Sunflower (Helianthus annuus) Leaves. Frontiers in Plant Science, 2022, 13, 757048.	3.6	2
136	Environmental Biogeochemistry of Elements and Emerging Contaminants. Journal of Chemistry, 2018, 2018, 1-2.	1.9	1
137	Examining a synchrotron-based approach for <i>in situ</i> analyses of Al speciation in plant roots. Journal of Synchrotron Radiation, 2020, 27, 100-109.	2.4	0