
Olof Leimar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1735316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reproductive skew, fighting costs and winner–loser effects in social dominance evolution. Journal of Animal Ecology, 2022, 91, 1036-1046.	2.8	12
2	An evolutionary perspective on stress responses, damage and repair. Hormones and Behavior, 2022, 142, 105180.	2.1	9
3	Towards an Evolutionary Theory of Stress Responses. Trends in Ecology and Evolution, 2021, 36, 39-48.	8.7	58
4	Learning, exploitation and bias in games. PLoS ONE, 2021, 16, e0246588.	2.5	6
5	Effects of social experience, aggressiveness and comb size on contest success in male domestic fowl. Royal Society Open Science, 2021, 8, 201213.	2.4	4
6	The Evolution of Social Dominance through Reinforcement Learning. American Naturalist, 2021, 197, 560-575.	2.1	13
7	The evolution of social learning as phenotypic cue integration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200048.	4.0	3
8	Cooperation, with friends or with relatives?. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2107652118.	7.1	1
9	Reinforcement Learning Theory Reveals the Cognitive Requirements for Solving the Cleaner Fish Market Task. American Naturalist, 2020, 195, 664-677.	2.1	22
10	Game Theory in Biology. , 2020, , .		54
11	Generalization of learned preferences covaries with behavioral flexibility in red junglefowl chicks. Behavioral Ecology, 2019, 30, 1375-1381.	2.2	11
12	Learning leads to bounded rationality and the evolution of cognitive bias in public goods games. Scientific Reports, 2019, 9, 16319.	3.3	13
13	Game theory models of animal contests: are we at a standstill?: a comment on Chapin et al Behavioral Ecology, 2019, 30, 1190-1191.	2.2	5
14	Efficient application of a browsing repellent: Can associational effects within and between plants be exploited?. European Journal of Forest Research, 2019, 138, 253-262.	2.5	2
15	Ecological Genetic Conflict: Genetic Architecture Can Shift the Balance between Local Adaptation and Plasticity. American Naturalist, 2019, 193, 70-80.	2.1	8
16	Biased generalization of salient traits drives the evolution of warning signals. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180283.	2.6	12
17	Personality remains: no effect of 3-week social status experience on personality in male fowl. Behavioral Ecology, 2018, 29, 312-320.	2.2	4
18	Learning of salient prey traits explains Batesian mimicry evolution. Evolution; International Journal of Organic Evolution, 2018, 72, 531-539.	2.3	4

#	Article	IF	CITATIONS
19	The relationship between learning speed and personality is age- and task-dependent in red junglefowl. Behavioral Ecology and Sociobiology, 2018, 72, 168.	1.4	41
20	Borrowed plant defences: Deterring browsers using a forestry by-product. Forest Ecology and Management, 2017, 390, 1-7.	3.2	7
21	Winter chilling speeds spring development of temperate butterflies. Journal of Animal Ecology, 2017, 86, 718-729.	2.8	25
22	Individual aggression, but not winner–loser effects, predicts social rank in male domestic fowl. Behavioral Ecology, 2017, 28, 874-882.	2.2	19
23	A comparison of animal personality and coping styles in the red junglefowl. Animal Behaviour, 2017, 130, 209-220.	1.9	42
24	Adaptation to fluctuating environments in a selection experiment with <i>Drosophila melanogaster</i> . Ecology and Evolution, 2017, 7, 3796-3807.	1.9	13
25	Directional associational plant defense from Red deer (<i>Cervus elaphus</i>) foraging decisions. Ecosphere, 2017, 8, e01714.	2.2	6
26	Genes as Cues of Relatedness and Social Evolution in Heterogeneous Environments. PLoS Computational Biology, 2016, 12, e1005006.	3.2	9
27	Towards a mechanistic understanding of insect life history evolution: oxygen-dependent induction of moulting explains moulting sizes. Biological Journal of the Linnean Society, 2016, 117, 586-600.	1.6	18
28	Phenological matching rather than genetic variation in host preference underlies geographical variation in host plants used by orange tip butterflies. Biological Journal of the Linnean Society, 2016, 119, 1060-1067.	1.6	10
29	Detection vs. selection: integration of genetic, epigenetic and environmental cues in fluctuating environments. Ecology Letters, 2016, 19, 1267-1276.	6.4	117
30	Effect of winter cold duration on spring phenology of the orange tip butterfly, <i>Anthocharis cardamines</i> . Ecology and Evolution, 2015, 5, 5509-5520.	1.9	48
31	Evolutionary Game Theory in Biology. Handbook of Game Theory With Economic Applications, 2015, 4, 575-617.	1.3	5
32	Multi-trait mimicry and the relative salience of individual traits. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152127.	2.6	16
33	The Evolution of Transgenerational Integration of Information in Heterogeneous Environments. American Naturalist, 2015, 185, E55-E69.	2.1	170
34	Genes as cues: phenotypic integration of genetic and epigenetic information from a Darwinian perspective. Trends in Ecology and Evolution, 2015, 30, 327-333.	8.7	102
35	Personality Predicts Social Dominance in Male Domestic Fowl. PLoS ONE, 2014, 9, e103535.	2.5	43
36	Social status and personality: stability in social state can promote consistency of behavioural responses. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132531.	2.6	60

#	Article	IF	CITATIONS
37	Stimulus Salience as an Explanation for Imperfect Mimicry. Current Biology, 2014, 24, 965-969.	3.9	95
38	Alate production in an aphid in relation to ant tending and alarm pheromone. Ecological Entomology, 2014, 39, 664-666.	2.2	4
39	Variation in two phases of postâ€winter development of a butterfly. Journal of Evolutionary Biology, 2014, 27, 2644-2653.	1.7	16
40	Transgenerational effects and the cost of ant tending in aphids. Oecologia, 2013, 173, 779-790.	2.0	14
41	Limiting similarity, species packing, and the shape of competition kernels. Journal of Theoretical Biology, 2013, 339, 3-13.	1.7	46
42	Heterospecific courtship, minority effects and niche separation between cryptic butterfly species. Journal of Evolutionary Biology, 2013, 26, 971-979.	1.7	53
43	Food Selection by Herbivores and Neighbourhood Effects in the Evolution of Plant Defences. Annales Zoologici Fennici, 2012, 49, 45-57.	0.6	16
44	Development and evolution of caste dimorphism in honeybees – a modeling approach. Ecology and Evolution, 2012, 2, 3098-3109.	1.9	61
45	FEATURE SALTATION AND THE EVOLUTION OF MIMICRY. Evolution; International Journal of Organic Evolution, 2012, 66, 807-817.	2.3	32
46	Ant–aphid mutualism: the influence of ants on the aphid summer cycle. Oikos, 2012, 121, 61-66.	2.7	13
47	Genes as leaders and followers in evolution. Trends in Ecology and Evolution, 2011, 26, 143-151.	8.7	151
48	The evolution of novel cues for ancestral phenotypes. Trends in Ecology and Evolution, 2011, 26, 436-437.	8.7	1
49	Inducible Defenses: Continuous Reaction Norms or Threshold Traits?. American Naturalist, 2011, 178, 397-410.	2.1	35
50	A simple fitness proxy for structured populations with continuous traits, with case studies on the evolution of haplo-diploids and genetic dimorphisms. Journal of Biological Dynamics, 2011, 5, 163-190.	1.7	25
51	FEATURE THEORY AND THE TWO-STEP HYPOTHESIS OF MÜLLERIAN MIMICRY EVOLUTION. Evolution; International Journal of Organic Evolution, 2010, 64, 810-822.	2.3	26
52	Variation and the response to variation as a basis for successful cooperation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2627-2633.	4.0	121
53	Cooperation for direct fitness benefits. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2619-2626.	4.0	96
54	Environmental and genetic cues in the evolution of phenotypic polymorphism. Evolutionary Ecology, 2009, 23, 125-135.	1.2	60

#	Article	IF	CITATIONS
55	<i>G</i> _{ST} is still a useful measure of genetic differentiation — a comment on Jost's <i>D</i> . Molecular Ecology, 2009, 18, 2084-2087.	3.9	108
56	The evolution of dispersal – the importance of information about population density and habitat characteristics. Oikos, 2009, 118, 291-299.	2.7	52
57	EVOLUTION OF PHENOTYPIC CLUSTERS THROUGH COMPETITION AND LOCAL ADAPTATION ALONG AN ENVIRONMENTAL GRADIENT. Evolution; International Journal of Organic Evolution, 2008, 62, 807-822.	2.3	64
58	EFFECT OF MUTATION ON GENETIC DIFFERENTIATION AMONG NONEQUILIBRIUM POPULATIONS. Evolution; International Journal of Organic Evolution, 2008, 62, 2250-2259.	2.3	35
59	EVOLUTIONARY IMPLICATIONS OF THE FORM OF PREDATOR GENERALIZATION FOR APOSEMATIC SIGNALS AND MIMICRY IN PREY. Evolution; International Journal of Organic Evolution, 2008, 62, 2913-2921.	2.3	46
60	Wolf et al. reply. Nature, 2008, 451, E9-E10.	27.8	12
61	Pairs of cooperating cleaner fish provide better service quality than singletons. Nature, 2008, 455, 964-966.	27.8	119
62	Learning and the mimicry spectrum: from quasi-Bates to super-Müller. Animal Behaviour, 2008, 76, 1591-1599.	1.9	26
63	Spatial scales of foraging in fallow deer: Implications for associational effects in plant defences. Acta Oecologica, 2008, 34, 12-20.	1.1	20
64	The effect of spatial scale on plant associational defences against mammalian herbivores. Ecoscience, 2008, 15, 343-348.	1.4	23
65	Multimodal pattern formation in phenotype distributions of sexual populations. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 347-357.	2.6	83
66	Life-history trade-offs favour the evolution of animal personalities. Nature, 2007, 447, 581-584.	27.8	1,245
67	Wolf et al. reply. Nature, 2007, 450, E5-E6.	27.8	23
68	A test of simultaneous and successive negative contrast in fallow deer foraging behaviour. Animal Behaviour, 2007, 74, 395-402.	1.9	23
69	Disruptive selection and then what?. Trends in Ecology and Evolution, 2006, 21, 238-245.	8.7	269
70	Facing the facts. Journal of Evolutionary Biology, 2006, 19, 1403-1405.	1.7	23
71	Cooperating for direct fitness benefits. Journal of Evolutionary Biology, 2006, 19, 1400-1402.	1.7	13
72	Associational effects of plant defences in relation to within- and between-patch food choice by a mammalian herbivore: neighbour contrast susceptibility and defence. Oecologia, 2006, 147, 253-260.	2.0	120

#	Article	IF	CITATIONS
73	A New Perspective on Developmental Plasticity and the Principles of Adaptive Morph Determination. American Naturalist, 2006, 167, 367-376.	2.1	115
74	Density-dependent dispersal in the Glanville fritillary,Melitaea cinxia. Oikos, 2005, 108, 465-472.	2.7	41
75	Müllerian mimicry: an examination of Fisher's theory of gradual evolutionary change. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2269-2275.	2.6	39
76	The Evolution of Phenotypic Polymorphism: Randomized Strategies versus Evolutionary Branching. American Naturalist, 2005, 165, 669-681.	2.1	143
77	PLANT SECONDARY COMPOUNDS AND THE FREQUENCY OF FOOD TYPES AFFECT FOOD CHOICE BY MAMMALIAN HERBIVORES. Ecology, 2005, 86, 2450-2460.	3.2	52
78	Social stability and daily body mass gain in great tits. Behavioral Ecology, 2004, 15, 549-554.	2.2	29
79	Adaptation and constraint in the evolution of environmental sex determination. Journal of Theoretical Biology, 2004, 227, 561-570.	1.7	20
80	Habitat preference and habitat exploration in two species of satyrine butterflies. Ecography, 2003, 26, 474-480.	4.5	16
81	THE EVOLUTION OF ENVIRONMENTAL AND GENETIC SEX DETERMINATION IN FLUCTUATING ENVIRONMENTS. Evolution; International Journal of Organic Evolution, 2003, 57, 2667-2677.	2.3	50
82	The function of threat display in wintering great tits. Animal Behaviour, 2003, 65, 573-584.	1.9	15
83	THE EVOLUTION OF ENVIRONMENTAL AND GENETIC SEX DETERMINATION IN FLUCTUATING ENVIRONMENTS. Evolution; International Journal of Organic Evolution, 2003, 57, 2667.	2.3	36
84	The evolution of movements and behaviour at boundaries in different landscapes: a common arena experiment with butterflies. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1815-1821.	2.6	94
85	Spatial and temporal variation in flight morphology in the butterfly Melitaea cinxia (Lepidoptera:) Tj ETQq1 1 0.73	84314 rgB 1.6	T /Overlock 42
86	Ants on a Turing trail. Nature, 2002, 418, 141-142.	27.8	29
87	The effect of food quality and relative abundance on food choice in fallow deer. Animal Behaviour, 2002, 64, 439-445.	1.9	56
88	Habitat exploration in butterflies – an outdoor cage experiment. Evolutionary Ecology, 2002, 16, 1-14.	1.2	28
89	Evolution of cooperation through indirect reciprocity. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 745-753.	2.6	527
90	The influence of predation risk on threat display in great tits. Behavioral Ecology, 2001, 12, 375-380.	2.2	12

#	Article	IF	CITATIONS
91	Sexual conflict and cooperation in butterfly reproduction: a comparative study of polyandry and female fitness. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1661-1667.	2.6	98
92	Did aggregation favour the initial evolution of warning coloration? A novel world revisited. Animal Behaviour, 2000, 59, 281-287.	1.9	64
93	Sex–biased dispersal in sperm whales: contrasting mitochondrial and nuclear genetic structure of global populations. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 347-354.	2.6	132
94	Fitness Interactions among Plants: Optimal Defence and Evolutionary Game Theory. , 1999, , 63-83.		24
95	Synergistic selection and graded traits. Evolutionary Ecology, 1998, 12, 59-71.	1.2	58
96	Metapopulation Extinction and Genetic Variation in Dispersal-Related Traits. Oikos, 1997, 80, 448.	2.7	35
97	Unpredictable environments, nuptial gifts and the evolution of sexual size dimorphism in insects: an experiment. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 475-479.	2.6	27
98	Reciprocity and communication of partner quality. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1209-1215.	2.6	36
99	Repeated Games: A State Space Approach. Journal of Theoretical Biology, 1997, 184, 471-498.	1.7	47
100	Low diversity and biased substitution patterns in the mitochondrial DNA control region of sperm whales: implications for estimates of time since common ancestry. Molecular Biology and Evolution, 1996, 13, 1318-1326.	8.9	91
101	The Effect of Flexible Growth Rates on Optimal Sizes and Development Times in a Seasonal Environment. American Naturalist, 1996, 147, 381-395.	2.1	384
102	Signalling in a mutualistic interaction. Animal Behaviour, 1996, 52, 321-333.	1.9	80
103	Life-history analysis of the Trivers and Willard sex-ratio problem. Behavioral Ecology, 1996, 7, 316-325.	2.2	220
104	Life History Plasticity: Influence of Photoperiod on Growth and Development in the Common Blue Butterfly. Oikos, 1996, 76, 228.	2.7	90
105	Unpredictable food and sexual size dimorphism in insects. Proceedings of the Royal Society B: Biological Sciences, 1994, 258, 121-125.	2.6	65
106	The evolution of cooperation in mobile organisms. Animal Behaviour, 1993, 45, 747-757.	1.9	292
107	Strategic behaviour in an interspecific mutualism: interactions between lycaenid larvae and ants. Animal Behaviour, 1993, 46, 1177-1182.	1.9	64
108	A Test of the Sequential Assessment Game: Fighting in the Bowl and Doily Spider Frontinella pyramitela. Evolution; International Journal of Organic Evolution, 1991, 45, 862.	2.3	51

#	Article	IF	CITATIONS
109	A TEST OF THE SEQUENTIAL ASSESSMENT GAME: FIGHTING IN THE BOWL AND DOILY SPIDER <i>FRONTINELLA PYRAMITELA</i> . Evolution; International Journal of Organic Evolution, 1991, 45, 862-874.	2.3	47
110	Egg lustering: Mother Wants her Neighbour's Offspring to be Eaten First. Ethology, 1991, 88, 342-344.	1.1	0
111	A test of the sequential assessment game: fighting in the cichlid fish Nannacara anomala. Animal Behaviour, 1990, 40, 1-14.	1.9	356
112	The evolution of fatal fighting. Animal Behaviour, 1990, 39, 1-9.	1.9	343
113	The Evolution of Gregariousness in Distasteful Insects as a Defense Against Predators. American Naturalist, 1988, 132, 723-734.	2.1	136
114	Evolution of fighting behaviour: The effect of variation in resource value. Journal of Theoretical Biology, 1987, 127, 187-205.	1.7	434
115	Evolutionary Stability of Aposematic Coloration and Prey Unprofitability: A Theoretical Analysis. American Naturalist, 1986, 128, 469-490.	2.1	197
116	The Distribution of the Paternity Index as a Basis for Evaluation of Sequential Testing in Paternity Analysis. Human Heredity, 1984, 34, 46-58.	0.8	0
117	Effects of asymmetries in owner-intruder conflicts. Journal of Theoretical Biology, 1984, 111, 475-491.	1.7	210
118	Evolution of fighting behaviour: Decision rules and assessment of relative strength. Journal of Theoretical Biology, 1983, 102, 387-410.	1.7	712
119	The accuracy of Kramers' theory of chemical kinetics. Physica A: Statistical Mechanics and Its Applications, 1979, 98, 313-324.	2.6	59
120	On the emergence of new function in primitive proteins. Journal of Theoretical Biology, 1978, 75, 167-180.	1.7	2