Jean Cavarelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1734925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Turning Nonselective Inhibitors of Type I Protein Arginine Methyltransferases into Potent and Selective Inhibitors of Protein Arginine Methyltransferase 4 through a Deconstruction–Reconstruction and Fragment-Growing Approach. Journal of Medicinal Chemistry, 2022, 65, 11574-11606.	6.4	15
2	A Direct Assay for Measuring the Activity and Inhibition of Coactivator-Associated Arginine Methyltransferase 1. Biochemistry, 2022, 61, 1055-1063.	2.5	1
3	Structural studies provide new insights into the role of lysine acetylation on substrate recognition by CARM1 and inform the design of potent peptidomimetic inhibitors. ChemBioChem, 2021, 22, 3469-3476.	2.6	3
4	Structure, Activity and Function of the PRMT2 Protein Arginine Methyltransferase. Life, 2021, 11, 1263.	2.4	21
5	Aminobenzosuberone derivatives as PfA-M1 inhibitors: Molecular recognition and antiplasmodial evaluation. Bioorganic Chemistry, 2020, 98, 103750.	4.1	10
6	Hijacking DNA methyltransferase transition state analogues to produce chemical scaffolds for PRMT inhibitors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170072.	4.0	24
7	Transition state mimics are valuable mechanistic probes for structural studies with the arginine methyltransferase CARM1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3625-3630.	7.1	31
8	Insight into the remarkable affinity and selectivity of the aminobenzosuberone scaffold for the M1 aminopeptidases family based on structure analysis. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1413-1421.	2.6	8
9	SECIS-binding protein 2 interacts with the SMN complex and the methylosome for selenoprotein mRNP assembly and translation. Nucleic Acids Research, 2017, 45, gkx031.	14.5	13
10	Structural studies of protein arginine methyltransferase 2 reveal its interactions with potential substrates and inhibitors. FEBS Journal, 2017, 284, 77-96.	4.7	25
11	TCTP contains a BH3-like domain, which instead of inhibiting, activates Bcl-xL. Scientific Reports, 2016, 6, 19725.	3.3	39
12	Structure of the Elongator cofactor complex Kti11/Kti13 provides insight into the role of Kti13 in Elongatorâ€dependent <scp>tRNA</scp> modification. FEBS Journal, 2015, 282, 819-833.	4.7	20
13	Functional insights from high resolution structures of mouse protein arginine methyltransferase 6. Journal of Structural Biology, 2015, 191, 175-183.	2.8	23
14	Structural insight into arginine methylation by the mouse protein arginine methyltransferase 7: a zinc finger freezes the mimic of the dimeric state into a single active site. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2401-2412.	2.5	32
15	Molecular Basis for the Antiparasitic Activity of a Mercaptoacetamide Derivative That Inhibits Histone Deacetylase 8 (HDAC8) from the Human Pathogen Schistosoma mansoni. Journal of Molecular Biology, 2014, 426, 3442-3453.	4.2	60
16	Cloning, expression, purification and preliminary X-ray crystallographic analysis of mouse protein arginine methyltransferase 7. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 80-86.	0.8	8
17	Structural Basis for Hijacking of Cellular LxxLL Motifs by Papillomavirus E6 Oncoproteins. Science, 2013, 339, 694-698.	12.6	167
18	Structural Basis for the Inhibition of Histone Deacetylase 8 (HDAC8), a Key Epigenetic Player in the Blood Fluke Schistosoma mansoni. PLoS Pathogens, 2013, 9, e1003645.	4.7	136

JEAN CAVARELLI

#	Article	IF	CITATIONS
19	Identification of Small-Molecule Enhancers of Arginine Methylation Catalyzed by Coactivator-Associated Arginine Methyltransferase 1. Journal of Medicinal Chemistry, 2012, 55, 9875-9890.	6.4	22
20	On the Structure and Function of the Phytoene Desaturase CRTI from Pantoea ananatis, a Membrane-Peripheral and FAD-Dependent Oxidase/Isomerase. PLoS ONE, 2012, 7, e39550.	2.5	87
21	Structural insights into transcription complexes. Journal of Structural Biology, 2011, 175, 135-146.	2.8	14
22	Acyl derivatives of p-aminosulfonamides and dapsone as new inhibitors of the arginine methyltransferase hPRMT1. Bioorganic and Medicinal Chemistry, 2011, 19, 3717-3731.	3.0	85
23	Structure determination of the minimal complex between Tfb5 and Tfb2, two subunits of the yeast transcription/DNA-repair factor TFIIH: a retrospective study. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 745-755.	2.5	4
24	Crystallization and preliminary crystallographic analysis of eukaryotic transcription and mRNA export factor lws1 fromEncephalitozoon cuniculi. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 207-210.	0.7	2
25	The structure of an lws1/Spt6 complex reveals an interaction domain conserved in TFIIS, Elongin A and Med26. EMBO Journal, 2010, 29, 3979-3991.	7.8	58
26	Noncanonical Tandem SH2 Enables Interaction of Elongation Factor Spt6 with RNA Polymerase II. Journal of Biological Chemistry, 2010, 285, 38389-38398.	3.4	52
27	TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death and Differentiation, 2008, 15, 1211-1220.	11.2	184
28	Structural basis for group A trichothiodystrophy. Nature Structural and Molecular Biology, 2008, 15, 980-984.	8.2	54
29	Crystal Structure, Biochemical and Genetic Characterization of Yeast and E. cuniculi TAFII5 N-terminal Domain: Implications for TFIID Assembly. Journal of Molecular Biology, 2007, 368, 1292-1306.	4.2	21
30	Expression, purification, crystallization and preliminary crystallographic study of isolated modules of the mouse coactivator-associated arginine methyltransferase 1. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 330-333.	0.7	9
31	Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains. EMBO Journal, 2007, 26, 4391-4401.	7.8	131
32	Expression, purification, and characterization of a new heterotetramer structure of leucyl-tRNA synthetase from Aquifex aeolicus in Escherichia coli. Protein Expression and Purification, 2006, 47, 1-9.	1.3	2
33	Crystallization and preliminary X-ray crystallographic study of the wild type and two mutants of the CP1 hydrolytic domain fromAquifex aeolicusleucyl-tRNA synthetase. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 899-901.	0.7	Ο
34	Cloning, purification and crystallization of a Walker-typePyrococcus abyssiATPase family member. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 925-927.	0.7	0
35	Biochemical and NMR Mapping of the Interface between CREB-binding Protein and Ligand Binding Domains of Nuclear Receptor. Journal of Biological Chemistry, 2005, 280, 5682-5692.	3.4	17
36	Translationally controlled tumor protein is a target of tumor reversion. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15364-15369.	7.1	208

JEAN CAVARELLI

#	Article	IF	CITATIONS
37	Mutation and Evolution of the Magnesium-Binding Site of a Class II Aminoacyl-tRNA Synthetaseâ€. Biochemistry, 2004, 43, 7028-7037.	2.5	12
38	Pushing Induced Fit to Its Limits. Structure, 2003, 11, 484-486.	3.3	3
39	Evidence for assembly-dependent folding of protein and RNA in an icosahedral virus. Virology, 2003, 314, 26-33.	2.4	20
40	Limited Set of Amino Acid Residues in a Class Ia Aminoacyl-tRNA Synthetase Is Crucial for tRNA Bindingâ€. Biochemistry, 2003, 42, 15092-15101.	2.5	14
41	Crystal Structure of the V-region of Streptococcus mutans Antigen I/II at 2.4Ã Resolution Suggests a Sugar Preformed Binding Site. Journal of Molecular Biology, 2002, 318, 179-188.	4.2	55
42	Crucial Role of the HIGH-loop Lysine for the Catalytic Activity of Arginyl-tRNA Synthetase. Journal of Biological Chemistry, 2001, 276, 3723-3726.	3.4	15
43	Crystallization and preliminary X-ray crystallographic analysis of yeast arginyl-tRNA synthetase–yeast tRNAArgcomplexes. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 492-494.	2.5	6
44	tRNA aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding. EMBO Journal, 2000, 19, 5599-5610.	7.8	159
45	In vivo selection of lethal mutations reveals two functional domains in arginyl–tRNA synthetase. Rna, 2000, 6, 434-448.	3.5	15
46	The free yeast aspartyl-tRNA synthetase differs from the tRNAAsp-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain. Journal of Molecular Biology, 2000, 299, 1313-1324.	4.2	67
47	Crystallogenesis studies on yeast aspartyl-tRNA synthetase: use of phase diagram to improve crystal quality. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 149-156.	2.5	17
48	Aminoacyl-tRNA synthetases: A new image for a classical family. Biochimie, 1999, 81, 683-700.	2.6	81
49	Active site mapping of yeast aspartyl-tRNA synthetase by in vivo selection of enzyme mutations lethal for cell growth. Journal of Molecular Biology, 1999, 288, 231-242.	4.2	19
50	L-Arginine recognition by yeast arginyl-tRNA synthetase. EMBO Journal, 1998, 17, 5438-5448.	7.8	101
51	Structures of RNA-binding proteins. Quarterly Reviews of Biophysics, 1997, 30, 195-240.	5.7	19
52	The structure of Staphylococcus aureus epidermolytic toxin A, an atypic serine protease, at 1.7 Ã resolution. Structure, 1997, 5, 813-824.	3.3	88
53	The 2.8 Ã Structure of aT=4 Animal Virus and its Implications for Membrane Translocation of RNA. Journal of Molecular Biology, 1996, 261, 1-10.	4.2	103
54	Conformational flexibility of tRNA: structural changes in yeast tRNAAsp upon binding to aspartyl-tRNA synthetase. Biochimie, 1996, 78, 624-631.	2.6	26

JEAN CAVARELLI

#	Article	IF	CITATIONS
55	Genomic organization of the rat aspartyl-tRNA synthetase gene family: A single active gene and several retropseudogenes. Gene, 1996, 180, 197-205.	2.2	2
56	The class II aminoacyl-tRNA synthetases and their active site: Evolutionary conservation of an ATP binding site. Journal of Molecular Evolution, 1995, 40, 499-508.	1.8	44
57	Yeast tRNAAsp recognition by its cognate class II aminoacyl-tRNA synthetase. Nature, 1993, 362, 181-184.	27.8	316
58	Yeast aspartyl-tRNA synthetase: A structural view of the aminoacylation reaction. Biochimie, 1993, 75, 1117-1123.	2.6	19
59	Role of dimerization in yeast aspartyl-tRNA synthetase and importance of the class II invariant proline Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10816-10820.	7.1	63
60	Recognition of tRNAs by aminoacyl-tRNA synthetases FASEB Journal, 1993, 7, 79-86.	0.5	93
61	Crystallization and preliminary structure analysis of an insect virus with T=4 quasi-symmetry: Nudaurelia capensis ω virus. Acta Crystallographica Section B: Structural Science, 1991, 47, 23-29.	1.8	22
62	A high resolution diffracting crystal form of the complex between yeast tRNAAsp and aspartyl-tRNA synthetase. Journal of Molecular Biology, 1988, 201, 235-236.	4.2	55
63	Yeast tRNAAsp-Aspartyl-tRNA Synthetase Complex: Low Resolution Crystal Structure. Journal of Biomolecular Structure and Dynamics, 1987, 5, 187-198.	3.5	29
64	Preliminary crystallographic data for exfoliative toxin B from Staphylococcus aureus. Journal of Molecular Biology, 1984, 175, 89-91.	4.2	5
65	The Aspartic Acid tRNA System: Recognition by a Class II Aminoacyl-tRNA Synthetase. , 0, , 411-422.		1