
Bernard W Balleine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1733934/publications.pdf Version: 2024-02-01

REDNADD W RALLEINE

#	Article	IF	CITATIONS
1	CRF-receptor1 modulation of the dopamine projection to prelimbic cortex facilitates cognitive flexibility after acute and chronic stress. Neurobiology of Stress, 2022, 16, 100424.	4.0	4
2	A novel estimation method for the counting of dendritic spines. Journal of Neuroscience Methods, 2022, 368, 109454.	2.5	1
3	Animal models of action control and cognitive dysfunction in Parkinson's disease. Progress in Brain Research, 2022, 269, 227-255.	1.4	3
4	The Neural Bases of Action-Outcome Learning in Humans. Journal of Neuroscience, 2022, 42, 3636-3647.	3.6	13
5	Affective Valence Regulates Associative Competition in Pavlovian Conditioning. Frontiers in Behavioral Neuroscience, 2022, 16, 801474.	2.0	3
6	Determining the effects of training duration on the behavioral expression of habitual control in humans: a multilaboratory investigation. Learning and Memory, 2022, 29, 16-28.	1.3	25
7	Medial Striatum. , 2022, , 4153-4157.		Ο
8	A GPCR-based â€~memory' process mediates the influence of predictive learning on choice between competing courses of action Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2021, 94, 1-SL4.	0.0	0
9	How predictive learning influences choice: Evidence for a GPCRâ€based memory process necessary for Pavlovianâ€instrumental transfer. Journal of Neurochemistry, 2021, 157, 1436-1449.	3.9	5
10	Impact of ambient sound on risk perception in humans: neuroeconomic investigations. Scientific Reports, 2021, 11, 5392.	3.3	4
11	Does disrupting the orbitofrontal cortex alter sensitivity to punishment? A potential mechanism of compulsivity Behavioral Neuroscience, 2021, 135, 174-181.	1.2	5
12	General Pavlovian-instrumental transfer tests reveal selective inhibition of the response type – whether Pavlovian or instrumental – performed during extinction. Neurobiology of Learning and Memory, 2021, 183, 107483.	1.9	5
13	The dorsomedial striatum: an optimal cellular environment for encoding and updating goal-directed learning. Current Opinion in Behavioral Sciences, 2021, 41, 38-44.	3.9	13
14	Inhibition of vascular adhesion protein 1 protects dopamine neurons from the effects of acute inflammation and restores habit learning in the striatum. Journal of Neuroinflammation, 2021, 18, 233.	7.2	11
15	Emotional predictions and choice. Nature Human Behaviour, 2021, 5, 1271-1272.	12.0	1
16	Medial Orbitofrontal Cortex Regulates Instrumental Conditioned Punishment, but not Pavlovian Conditioned Fear. Cerebral Cortex Communications, 2020, 1, tgaa039.	1.6	8
17	Amygdala-Cortical Control of Striatal Plasticity Drives the Acquisition of Goal-Directed Action. Current Biology, 2020, 30, 4541-4546.e5.	3.9	19
18	Goal-directed actions transiently depend on dorsal hippocampus. Nature Neuroscience, 2020, 23, 1194-1197.	14.8	31

#	Article	IF	CITATIONS
19	Intact corticostriatal control of goal-directed action in Alcohol Use Disorder: a Pavlovian-to-instrumental transfer and outcome-devaluation study. Scientific Reports, 2020, 10, 4949.	3.3	20
20	Local D2- to D1-neuron transmodulation updates goal-directed learning in the striatum. Science, 2020, 367, 549-555.	12.6	59
21	Basolateral Amygdala Drives a GPCR-Mediated Striatal Memory Necessary for Predictive Learning to Influence Choice. Neuron, 2020, 106, 855-869.e8.	8.1	16
22	Striatal direct and indirect pathway neurons differentially control the encoding and updating of goal-directed learning. ELife, 2020, 9, .	6.0	29
23	K369I Tau Mice Demonstrate a Shift Towards Striatal Neuron Burst Firing and Goal-directed Behaviour. Neuroscience, 2020, 449, 46-62.	2.3	2
24	From learning to action: the integration of dorsal striatal input and output pathways in instrumental conditioning. European Journal of Neuroscience, 2019, 49, 658-671.	2.6	60
25	The Meaning of Behavior: Discriminating Reflex and Volition in the Brain. Neuron, 2019, 104, 47-62.	8.1	121
26	Models that learn how humans learn: The case of decision-making and its disorders. PLoS Computational Biology, 2019, 15, e1006903.	3.2	33
27	A Neuroethics Framework for the Australian Brain Initiative. Neuron, 2019, 101, 365-369.	8.1	11
28	Hierarchical Action Control: Adaptive Collaboration Between Actions and Habits. Frontiers in Psychology, 2019, 10, 2735.	2.1	48
29	Learning the structure of the world: The adaptive nature of state-space and action representations in multi-stage decision-making. PLoS Computational Biology, 2019, 15, e1007334.	3.2	15
30	Optimal response vigor and choice under non-stationary outcome values. Psychonomic Bulletin and Review, 2019, 26, 182-204.	2.8	2
31	Open-field PET: Simultaneous brain functional imaging and behavioural response measurements in freely moving small animals. NeuroImage, 2019, 188, 92-101.	4.2	26
32	Prediction and control of operant behavior: What you see is not all there is Behavior Analysis (Washington, D C), 2019, 19, 202-212.	0.5	10
33	Impairments in action–outcome learning in schizophrenia. Translational Psychiatry, 2018, 8, 54.	4.8	31
34	Prefrontal Corticostriatal Disconnection Blocks the Acquisition of Goal-Directed Action. Journal of Neuroscience, 2018, 38, 1311-1322.	3.6	94
35	Methamphetamine promotes habitual action and alters the density of striatal glutamate receptor and vesicular proteins in dorsal striatum. Addiction Biology, 2018, 23, 857-867.	2.6	29
36	Substance P and dopamine interact to modulate the distribution of deltaâ€opioid receptors on cholinergic interneurons in the striatum. European Journal of Neuroscience, 2018, 47, 1159-1173.	2.6	6

#	Article	IF	CITATIONS
37	A novel, modernized Golgi-Cox stain optimized for CLARITY cleared tissue. Journal of Neuroscience Methods, 2018, 294, 102-110.	2.5	18
38	Motivational state controls the prediction error in Pavlovian appetitive-aversive interactions. Neurobiology of Learning and Memory, 2018, 147, 18-25.	1.9	11
39	Inferring action-dependent outcome representations depends on anterior but not posterior medial orbitofrontal cortex. Neurobiology of Learning and Memory, 2018, 155, 463-473.	1.9	46
40	The Motivation of Action and the Origins of Reward. , 2018, , 429-455.		1
41	The Bilateral Prefronto-striatal Pathway Is Necessary for Learning New Goal-Directed Actions. Current Biology, 2018, 28, 2218-2229.e7.	3.9	83
42	A new framework for conceptualizing symptoms in frontotemporal dementia: from animal models to the clinic. Brain, 2018, 141, 2245-2254.	7.6	19
43	Stress associated changes in Pavlovian-instrumental transfer in humans. Quarterly Journal of Experimental Psychology, 2017, 70, 675-685.	1.1	35
44	Pulling habits out of rats: adenosine 2A receptor antagonism in dorsomedial striatum rescues methâ€amphetamineâ€induced deficits in goalâ€directed action. Addiction Biology, 2017, 22, 172-183.	2.6	55
45	Neuroscience in gambling policy and treatment: an interdisciplinary perspective. Lancet Psychiatry,the, 2017, 4, 501-506.	7.4	14
46	Thalamic Control of Dorsomedial Striatum Regulates Internal State to Guide Goal-Directed Action Selection. Journal of Neuroscience, 2017, 37, 3721-3733.	3.6	50
47	Intermittent feeding alters sensitivity to changes in reward value. Appetite, 2017, 113, 1-6.	3.7	15
48	Inhibition of semicarbazideâ€sensitive amine oxidase/vascular adhesion proteinâ€1 reduces lipopolysaccharideâ€induced neuroinflammation. British Journal of Pharmacology, 2017, 174, 2302-2317.	5.4	24
49	The Lateral Habenula and Its Input to the Rostromedial Tegmental Nucleus Mediates Outcome-Specific Conditioned Inhibition. Journal of Neuroscience, 2017, 37, 10932-10942.	3.6	28
50	Electrocortical components of anticipation and consumption in a monetary incentive delay task. Psychophysiology, 2017, 54, 1686-1705.	2.4	32
51	A corticostriatal deficit promotes temporal distortion of automatic action in ageing. ELife, 2017, 6, .	6.0	12
52	Inhibitory Pavlovian–instrumental transfer in humans Journal of Experimental Psychology Animal Learning and Cognition, 2017, 43, 315-324.	0.5	15
53	Medial Striatum. , 2017, , 1-5.		1
54	Reduced goalâ€directed action control in autism spectrum disorder. Autism Research, 2016, 9, 1285-1293.	3.8	40

#	Article	IF	CITATIONS
55	Variance After-Effects Distort Risk Perception in Humans. Current Biology, 2016, 26, 1500-1504.	3.9	17
56	Aging-Related Dysfunction of Striatal Cholinergic Interneurons Produces Conflict in Action Selection. Neuron, 2016, 90, 362-373.	8.1	74
57	Impaired causal awareness and associated cortical–basal ganglia structural changes in youth psychiatric disorders. NeuroImage: Clinical, 2016, 12, 285-292.	2.7	4
58	Appetitive Pavlovian-instrumental Transfer: A review. Neuroscience and Biobehavioral Reviews, 2016, 71, 829-848.	6.1	242
59	Consolidation of Goal-Directed Action Depends on MAPK/ERK Signaling in Rodent Prelimbic Cortex. Journal of Neuroscience, 2016, 36, 11974-11986.	3.6	30
60	Toluene inhalation in adolescent rats reduces flexible behaviour in adulthood and alters glutamatergic and GABAergic signalling. Journal of Neurochemistry, 2016, 139, 806-822.	3.9	25
61	Extinction Generates Outcome-Specific Conditioned Inhibition. Current Biology, 2016, 26, 3169-3175.	3.9	20
62	Chronic Morphine Reduces Surface Expression of l´-Opioid Receptors in Subregions of Rostral Striatum. Neurochemical Research, 2016, 41, 500-509.	3.3	8
63	The Cognitive Control of Goal-Directed Action: How Predictive Learning Affects Choice. Advances in Cognitive Neurodynamics, 2016, , 27-33.	0.1	3
64	Medial Orbitofrontal Cortex Mediates Outcome Retrieval in Partially Observable Task Situations. Neuron, 2015, 88, 1268-1280.	8.1	175
65	Learning and Motivational Processes Contributing to Pavlovian–Instrumental Transfer and Their Neural Bases: Dopamine and Beyond. Current Topics in Behavioral Neurosciences, 2015, 27, 259-289.	1.7	90
66	Corticostriatal Control of Goal-Directed Action Is Impaired in Schizophrenia. Biological Psychiatry, 2015, 77, 187-195.	1.3	168
67	δâ€Opioid receptors in the accumbens shell mediate the influence of both excitatory and inhibitory predictions on choice. British Journal of Pharmacology, 2015, 172, 562-570.	5.4	22
68	Hierarchical control of goal-directed action in the cortical–basal ganglia network. Current Opinion in Behavioral Sciences, 2015, 5, 1-7.	3.9	38
69	Interaction of Insular Cortex and Ventral Striatum Mediates the Effect of Incentive Memory on Choice Between Goal-Directed Actions. Journal of Neuroscience, 2015, 35, 6464-6471.	3.6	80
70	Ventral Pallidal Projections to Mediodorsal Thalamus and Ventral Tegmental Area Play Distinct Roles in Outcome-Specific Pavlovian-Instrumental Transfer. Journal of Neuroscience, 2015, 35, 4953-4964.	3.6	59
71	Factual and Counterfactual Action-Outcome Mappings Control Choice between Goal-Directed Actions in Rats. Current Biology, 2015, 25, 1074-1079.	3.9	34
72	Plasticity in striatopallidal projection neurons mediates the acquisition of habitual actions. European Journal of Neuroscience, 2015, 42, 2097-2104.	2.6	46

#	Article	IF	CITATIONS
73	Thalamocortical integration of instrumental learning and performance and their disintegration in addiction. Brain Research, 2015, 1628, 104-116.	2.2	37
74	The role of opioid processes in reward and decisionâ€making. British Journal of Pharmacology, 2015, 172, 449-459.	5.4	52
75	Î-Opioid and Dopaminergic Processes in Accumbens Shell Modulate the Cholinergic Control of Predictive Learning and Choice. Journal of Neuroscience, 2014, 34, 1358-1369.	3.6	48
76	Action-value comparisons in the dorsolateral prefrontal cortex control choice between goal-directed actions. Nature Communications, 2014, 5, 4390.	12.8	41
77	The Acquisition of Goal-Directed Actions Generates Opposing Plasticity in Direct and Indirect Pathways in Dorsomedial Striatum. Journal of Neuroscience, 2014, 34, 9196-9201.	3.6	105
78	Dorsal and ventral streams: The distinct role of striatal subregions in the acquisition and performance of goal-directed actions. Neurobiology of Learning and Memory, 2014, 108, 104-118.	1.9	145
79	Habits as action sequences: hierarchical action control and changes in outcome value. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130482.	4.0	109
80	Effects of Repeated Cocaine Exposure on Habit Learning and Reversal by N-Acetylcysteine. Neuropsychopharmacology, 2014, 39, 1893-1901.	5.4	124
81	How many neural systems does it take to change a light bulb?. Trends in Cognitive Sciences, 2014, 18, 510-511.	7.8	0
82	Binge-Like Consumption of a Palatable Food Accelerates Habitual Control of Behavior and Is Dependent on Activation of the Dorsolateral Striatum. Journal of Neuroscience, 2014, 34, 5012-5022.	3.6	148
83	Translational studies of goal-directed action as a framework for classifying deficits across psychiatric disorders. Frontiers in Systems Neuroscience, 2014, 8, 101.	2.5	97
84	Impairments in Goal-Directed Actions Predict Treatment Response to Cognitive-Behavioral Therapy in Social Anxiety Disorder. PLoS ONE, 2014, 9, e94778.	2.5	53
85	Associative learning mechanisms underpinning the transition from recreational drug use to addiction. Annals of the New York Academy of Sciences, 2013, 1282, 12-24.	3.8	157
86	The Thalamostriatal Pathway and Cholinergic Control of Goal-Directed Action: Interlacing New with Existing Learning in the Striatum. Neuron, 2013, 79, 153-166.	8.1	253
87	Incentive Memory: Evidence the Basolateral Amygdala Encodes and the Insular Cortex Retrieves Outcome Values to Guide Choice between Goal-Directed Actions. Journal of Neuroscience, 2013, 33, 8753-8763.	3.6	133
88	Hierarchical and binary associations compete for behavioral control during instrumental biconditional discrimination Journal of Experimental Psychology, 2013, 39, 2-13.	1.7	40
89	Actions, Action Sequences and Habits: Evidence That Goal-Directed and Habitual Action Control Are Hierarchically Organized. PLoS Computational Biology, 2013, 9, e1003364.	3.2	173
90	Learning-Related Translocation of δ-Opioid Receptors on Ventral Striatal Cholinergic Interneurons Mediates Choice between Goal-Directed Actions. Journal of Neuroscience, 2013, 33, 16060-16071.	3.6	59

#	Article	IF	CITATIONS
91	The Role of the Amygdala-Striatal Pathway in the Acquisition and Performance of Goal-Directed Instrumental Actions. Journal of Neuroscience, 2013, 33, 17682-17690.	3.6	63
92	The Ventral Striato-Pallidal Pathway Mediates the Effect of Predictive Learning on Choice between Goal-Directed Actions. Journal of Neuroscience, 2013, 33, 13848-13860.	3.6	45
93	Reduced Heart Rate Variability in Social Anxiety Disorder: Associations with Gender and Symptom Severity. PLoS ONE, 2013, 8, e70468.	2.5	101
94	The role of the anterior, mediodorsal, and parafascicular thalamus in instrumental conditioning. Frontiers in Systems Neuroscience, 2013, 7, 51.	2.5	83
95	Transient Extracellular Glutamate Events in the Basolateral Amygdala Track Reward-Seeking Actions. Journal of Neuroscience, 2012, 32, 2734-2746.	3.6	63
96	Amygdala Central Nucleus Interacts with Dorsolateral Striatum to Regulate the Acquisition of Habits. Journal of Neuroscience, 2012, 32, 1073-1081.	3.6	147
97	μ- and Î-Opioid-Related Processes in the Accumbens Core and Shell Differentially Mediate the Influence of Reward-Guided and Stimulus-Guided Decisions on Choice. Journal of Neuroscience, 2012, 32, 1875-1883.	3.6	74
98	Oxytocin selectively moderates negative cognitive appraisals in high trait anxious males. Psychoneuroendocrinology, 2012, 37, 2022-2031.	2.7	65
99	Striatal Cholinergic Interneurons Display Activity-Related Phosphorylation of Ribosomal Protein S6. PLoS ONE, 2012, 7, e53195.	2.5	36
100	Habits, action sequences and reinforcement learning. European Journal of Neuroscience, 2012, 35, 1036-1051.	2.6	242
101	Contributions of ERK signaling in the striatum to instrumental learning and performance. Behavioural Brain Research, 2011, 218, 240-247.	2.2	80
102	Molecular substrates of action control in cortico-striatal circuits. Progress in Neurobiology, 2011, 95, 1-13.	5.7	96
103	The orbitofrontal cortex, predicted value, and choice. Annals of the New York Academy of Sciences, 2011, 1239, 43-50.	3.8	72
104	The General and Outcome-Specific Forms of Pavlovian-Instrumental Transfer Are Differentially Mediated by the Nucleus Accumbens Core and Shell. Journal of Neuroscience, 2011, 31, 11786-11794.	3.6	248
105	Extracellular Dopamine Levels in Striatal Subregions Track Shifts in Motivation and Response Cost during Instrumental Conditioning. Journal of Neuroscience, 2011, 31, 200-207.	3.6	80
106	Differential dependence of Pavlovian incentive motivation and instrumental incentive learning processes on dopamine signaling. Learning and Memory, 2011, 18, 475-483.	1.3	117
107	Neural Correlates of Instrumental Contingency Learning: Differential Effects of Action–Reward Conjunction and Disjunction. Journal of Neuroscience, 2011, 31, 2474-2480.	3.6	107
108	μ-Opioid Receptor Activation in the Basolateral Amygdala Mediates the Learning of Increases But Not Decreases in the Incentive Value of a Food Reward. Journal of Neuroscience, 2011, 31, 1591-1599.	3.6	59

#	Article	IF	CITATIONS
109	Extracting functional equivalence from reversing contingencies Journal of Experimental Psychology, 2010, 36, 165-171.	1.7	4
110	At the limbic–motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation. European Journal of Neuroscience, 2010, 32, 1735-1743.	2.6	141
111	Alcohol-paired contextual cues produce an immediate and selective loss of goal-directed action in rats. Frontiers in Integrative Neuroscience, 2010, 4, .	2.1	39
112	Human and Rodent Homologies in Action Control: Corticostriatal Determinants of Goal-Directed and Habitual Action. Neuropsychopharmacology, 2010, 35, 48-69.	5.4	1,437
113	Acquisition and Performance of Goal-Directed Instrumental Actions Depends on ERK Signaling in Distinct Regions of Dorsal Striatum in Rats. Journal of Neuroscience, 2010, 30, 2951-2959.	3.6	101
114	Multiple Forms of Value Learning and the Function of Dopamine. , 2009, , 367-387.		38
115	Mediated Conditioning versus Retrospective Revaluation in Humans: The Influence of Physical and Functional Similarity of Cues. Quarterly Journal of Experimental Psychology, 2009, 62, 470-482.	1.1	15
116	Evidence of Action Sequence Chunking in Goal-Directed Instrumental Conditioning and Its Dependence on the Dorsomedial Prefrontal Cortex. Journal of Neuroscience, 2009, 29, 8280-8287.	3.6	91
117	Distinct opioid circuits determine the palatability and the desirability of rewarding events. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12512-12517.	7.1	153
118	A specific role for posterior dorsolateral striatum in human habit learning. European Journal of Neuroscience, 2009, 29, 2225-2232.	2.6	637
119	The integrative function of the basal ganglia in instrumental conditioning. Behavioural Brain Research, 2009, 199, 43-52.	2.2	300
120	Resolution of conflict between goal-directed actions: Outcome encoding and neural control processes Journal of Experimental Psychology, 2009, 35, 382-393.	1.7	14
121	Rewardâ€guided learning beyond dopamine in the nucleus accumbens: the integrative functions of corticoâ€basal ganglia networks. European Journal of Neuroscience, 2008, 28, 1437-1448.	2.6	348
122	On habits and addiction: an associative analysis of compulsive drug seeking. Drug Discovery Today: Disease Models, 2008, 5, 235-245.	1.2	114
123	It's elemental my dear Watson. Behavioural Processes, 2008, 77, 434-436.	1.1	3
124	Inhibitory Sensory Preconditioning Detected with a Sodium Depletion Procedure. Quarterly Journal of Experimental Psychology, 2008, 61, 240-247.	1.1	7
125	The disunity of Pavlovian and instrumental values. Behavioral and Brain Sciences, 2008, 31, 456-457.	0.7	15
126	The Neural Mechanisms Underlying the Influence of Pavlovian Cues on Human Decision Making. Journal of Neuroscience, 2008, 28, 5861-5866.	3.6	150

#	Article	IF	CITATIONS
127	Differential Involvement of the Basolateral Amygdala and Mediodorsal Thalamus in Instrumental Action Selection. Journal of Neuroscience, 2008, 28, 4398-4405.	3.6	170
128	Calculating Consequences: Brain Systems That Encode the Causal Effects of Actions. Journal of Neuroscience, 2008, 28, 6750-6755.	3.6	223
129	The Neural Basis of Choice and Decision Making. Journal of Neuroscience, 2007, 27, 8159-8160.	3.6	43
130	Orbitofrontal Cortex Mediates Outcome Encoding in Pavlovian But Not Instrumental Conditioning. Journal of Neuroscience, 2007, 27, 4819-4825.	3.6	341
131	The Role of the Dorsal Striatum in Reward and Decision-Making: Figure 1 Journal of Neuroscience, 2007, 27, 8161-8165.	3.6	1,133
132	The influence of amphetamine on sensory and conditioned reinforcement: evidence for the re-selection hypothesis of dopamine function. Frontiers in Integrative Neuroscience, 2007, 1, 9.	2.1	17
133	Ambiguity and anxiety: when a glass half full is empty. Nature Neuroscience, 2007, 10, 807-808.	14.8	10
134	Genetic control of instrumental conditioning by striatopallidal neuron–specific S1P receptor Gpr6. Nature Neuroscience, 2007, 10, 1395-1397.	14.8	80
135	The influence of Pavlovian cues on instrumental performance is mediated by CaMKII activity in the striatum. European Journal of Neuroscience, 2007, 25, 2491-2497.	2.6	28
136	General and outcomeâ€specific forms of Pavlovianâ€instrumental transfer: the effect of shifts in motivational state and inactivation of the ventral tegmental area. European Journal of Neuroscience, 2007, 26, 3141-3149.	2.6	183
137	Selective reinstatement of instrumental performance depends on the discriminative stimulus properties of the mediating outcome. Learning and Behavior, 2007, 35, 43-52.	3.4	60
138	Still at the Choice-Point: Action Selection and Initiation in Instrumental Conditioning. Annals of the New York Academy of Sciences, 2007, 1104, 147-171.	3.8	148
139	The Contribution of Orbitofrontal Cortex to Action Selection. Annals of the New York Academy of Sciences, 2007, 1121, 174-192.	3.8	89
140	Inactivation of dorsolateral striatum enhances sensitivity to changes in the action–outcome contingency in instrumental conditioning. Behavioural Brain Research, 2006, 166, 189-196.	2.2	441
141	Instrumental learning in hyperdopaminergic mice. Neurobiology of Learning and Memory, 2006, 85, 283-288.	1.9	60
142	Parallel incentive processing: an integrated view of amygdala function. Trends in Neurosciences, 2006, 29, 272-279.	8.6	521
143	Stimulus salience and retrospective revaluation Journal of Experimental Psychology, 2006, 32, 481-487.	1.7	14
144	Motivational control of blocking Journal of Experimental Psychology, 2006, 32, 33-43.	1.7	8

#	Article	IF	CITATIONS
145	Dorsomedial Prefrontal Cortex Resolves Response Conflict in Rats. Journal of Neuroscience, 2006, 26, 5224-5229.	3.6	54
146	The role of Pavlovian cues in alcohol seeking in dependent and nondependent rats Journal of Studies on Alcohol and Drugs, 2005, 66, 53-61.	2.3	64
147	Perceptual Learning Enhances Retrospective Revaluation of Conditioned Flavor Preferences in Rats Journal of Experimental Psychology, 2005, 31, 341-350.	1.7	30
148	The role of the dorsomedial striatum in instrumental conditioning. European Journal of Neuroscience, 2005, 22, 513-523.	2.6	896
149	Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning. European Journal of Neuroscience, 2005, 22, 505-512.	2.6	365
150	Lesions of Medial Prefrontal Cortex Disrupt the Acquisition But Not the Expression of Goal-Directed Learning. Journal of Neuroscience, 2005, 25, 7763-7770.	3.6	250
151	Consolidation and Reconsolidation of Incentive Learning in the Amygdala. Journal of Neuroscience, 2005, 25, 830-835.	3.6	106
152	Double Dissociation of Basolateral and Central Amygdala Lesions on the General and Outcome-Specific Forms of Pavlovian-Instrumental Transfer. Journal of Neuroscience, 2005, 25, 962-970.	3.6	497
153	Motivational Control of Second-Order Conditioning Journal of Experimental Psychology, 2005, 31, 334-340.	1.7	11
154	Neural bases of food-seeking: Affect, arousal and reward in corticostriatolimbic circuitsâ~†. Physiology and Behavior, 2005, 86, 717-730.	2.1	285
155	Inhibitory sensory preconditioning. Quarterly Journal of Experimental Psychology Section B: Comparative and Physiological Psychology, 2004, 57, 261-272.	2.8	19
156	Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in in in instrumental learning. European Journal of Neuroscience, 2004, 19, 181-189.	2.6	1,019
157	Sensorimotor gating abnormalities in young males with fragile X syndrome and Fmr1-knockout mice. Molecular Psychiatry, 2004, 9, 417-425.	7.9	260
158	Incentive Behavior. , 2004, , 436-446.		9
159	The L-type calcium channel blocker nimodipine mitigates "learned helplessness―in rats. Pharmacology Biochemistry and Behavior, 2003, 74, 269-278.	2.9	10
160	Lesions of mediodorsal thalamus and anterior thalamic nuclei produce dissociable effects on instrumental conditioning in rats. European Journal of Neuroscience, 2003, 18, 1286-1294.	2.6	167
161	The role of prelimbic cortex in instrumental conditioning. Behavioural Brain Research, 2003, 146, 145-157.	2.2	375
162	Instrumental and Pavlovian incentive processes have dissociable effects on components of a heterogeneous instrumental chain Journal of Experimental Psychology, 2003, 29, 99-106.	1.7	97

#	Article	IF	CITATIONS
163	Helplessness and escape performance: Glutamate-adenosine interactions in the frontal cortex Behavioral Neuroscience, 2003, 117, 123-135.	1.2	23
164	The Effect of Lesions of the Basolateral Amygdala on Instrumental Conditioning. Journal of Neuroscience, 2003, 23, 666-675.	3.6	313
165	An Assessment of Factors Contributing to Instrumental Performance for Sexual Reward in the Rat. Quarterly Journal of Experimental Psychology Section B: Comparative and Physiological Psychology, 2002, 55, 75-88.	2.8	11
166	Sexual Experience Interacts with Steroid Exposure to Shape the Partner Preferences of Rats. Hormones and Behavior, 2002, 42, 148-157.	2.1	32
167	Reward, Motivation, and Reinforcement Learning. Neuron, 2002, 36, 285-298.	8.1	743
168	Sensitivity to Instrumental Contingency Degradation Is Mediated by the Entorhinal Cortex and Its Efferents via the Dorsal Hippocampus. Journal of Neuroscience, 2002, 22, 10976-10984.	3.6	122
169	Effects of cytotoxic nucleus accumbens lesions on instrumental conditioning in rats. Experimental Brain Research, 2002, 144, 50-68.	1.5	104
170	The Role of the Nucleus Accumbens in Instrumental Conditioning: Evidence of a Functional Dissociation between Accumbens Core and Shell. Journal of Neuroscience, 2001, 21, 3251-3260.	3.6	489
171	The Role of the Hippocampus in Instrumental Conditioning. Journal of Neuroscience, 2000, 20, 4233-4239.	3.6	123
172	The Effect of Lesions of the Insular Cortex on Instrumental Conditioning: Evidence for a Role in Incentive Memory. Journal of Neuroscience, 2000, 20, 8954-8964.	3.6	170
173	The role of incentive learning in instrumental outcome revaluation by sensory-specific satiety. Learning and Behavior, 1998, 26, 46-59.	3.4	155
174	Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology, 1998, 37, 407-419.	4.1	1,313
175	Role of primary motivation in stimulus preexposure effects Journal of Experimental Psychology, 1996, 22, 32-42.	1.7	22
176	Motivational control of heterogeneous instrumental chains Journal of Experimental Psychology, 1995, 21, 203-217.	1.7	92
177	Cholecystokinin attenuates incentive learning in rats Behavioral Neuroscience, 1995, 109, 312-319.	1.2	15
178	Motivational control after extended instrumental training. Learning and Behavior, 1995, 23, 197-206.	3.4	240
179	Motivational Control of Instrumental Action. Current Directions in Psychological Science, 1995, 4, 162-167.	5.3	105
180	Motivational control of goal-directed action. Learning and Behavior, 1994, 22, 1-18.	3.4	778

#	Article	IF	CITATIONS
181	Effects of ibotenic acid lesions of the Nucleus Accumbens on instrumental action. Behavioural Brain Research, 1994, 65, 181-193.	2.2	127
182	Benzodiazepine-induced outcome revaluation and the motivational control of instrumental action in rats Behavioral Neuroscience, 1994, 108, 573-589.	1.2	65
183	Role of cholecystokinin in the motivational control of instrumental action in rats Behavioral Neuroscience, 1994, 108, 590-605.	1.2	33
184	Instrumental performance following a shift in primary motivation depends on incentive learning Journal of Experimental Psychology, 1992, 18, 236-250.	1.7	134
185	Incentive learning and the motivational control of instrumental performance by thirst. Learning and Behavior, 1992, 20, 322-328.	3.4	21
186	The acquisition of self-stimulation of the medial prefrontal cortex following exposure to escapable or inescapable footshock. Behavioural Brain Research, 1991, 43, 167-174.	2.2	3
187	Reconsideration of the role of competing responses in demonstrations of the interference effect (learned helplessness) Journal of Experimental Psychology, 1991, 17, 270-280.	1.7	7
188	Differential effects of escapable and inescapable footshock on hippocampal theta activity Behavioral Neuroscience, 1991, 105, 202-209.	1.2	54
189	Effects of ethanol and tertiary butanol on blood glucose levels and body temperature of rats. Alcohol, 1989, 6, 183-187.	1.7	9
190	Footshock stress facilitates self-stimulation of the medial prefrontal cortex but not the lateral hypothalamus in the rat. Brain Research, 1989, 490, 397-403.	2.2	11
191	Environment-specific conditioning produced by electrical stimulation of the lateral hypothalamus. Physiology and Behavior, 1989, 46, 907-912.	2.1	7
192	Controllability of prestimulation of the medial prefrontal cortex determines the facilitation of self-stimulation and kindled seizures. Physiology and Behavior, 1989, 46, 239-245.	2.1	4
193	Friend or Foe: The Influence of Ambient Sound on Risk Perception. SSRN Electronic Journal, 0, , .	0.4	0