
Hans Lassmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1733335/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Annals of Neurology, 2000, 47, 707-717.	2.8	2,892
2	The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity, 2017, 47, 566-581.e9.	6.6	1,741
3	Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain, 2005, 128, 2705-2712.	3.7	1,558
4	The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain, 2009, 132, 1175-1189.	3.7	1,182
5	A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain, 2002, 125, 1450-1461.	3.7	1,078
6	The Immunopathology of Multiple Sclerosis: An Overview. Brain Pathology, 2007, 17, 210-218.	2.1	994
7	Pathological mechanisms in progressive multiple sclerosis. Lancet Neurology, The, 2015, 14, 183-193.	4.9	925
8	Inflammatory Cortical Demyelination in Early Multiple Sclerosis. New England Journal of Medicine, 2011, 365, 2188-2197.	13.9	922
9	Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain, 2006, 129, 1953-1971.	3.7	875
10	Clonal Expansions of Cd8+ T Cells Dominate the T Cell Infiltrate in Active Multiple Sclerosis Lesions as Shown by Micromanipulation and Single Cell Polymerase Chain Reaction. Journal of Experimental Medicine, 2000, 192, 393-404.	4.2	842
11	Progressive multiple sclerosis: pathology and pathogenesis. Nature Reviews Neurology, 2012, 8, 647-656.	4.9	793
12	Remyelination is extensive in a subset of multiple sclerosis patients. Brain, 2006, 129, 3165-3172.	3.7	667
13	Oxidative damage in multiple sclerosis lesions. Brain, 2011, 134, 1914-1924.	3.7	585
14	Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. American Journal of Pathology, 1988, 130, 443-54.	1.9	539
15	Neuromyelitis optica: Pathogenicity of patient immunoglobulin in vivo. Annals of Neurology, 2009, 66, 630-643.	2.8	504
16	The role of nitric oxide in multiple sclerosis. Lancet Neurology, The, 2002, 1, 232-241.	4.9	491
17	Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Annals of Neurology, 2015, 78, 710-721.	2.8	485
18	Loss of †`homeostatic' microglia and patterns of their activation in active multiple sclerosis. Brain, 2017, 140, 1900-1913.	3.7	475

#	Article	IF	CITATIONS
19	Autoimmunity to Myelin Oligodendrocyte Glycoprotein in Rats Mimics the Spectrum of Multiple Sclerosis Pathology. Brain Pathology, 1998, 8, 681-694.	2.1	472
20	Multiple Sclerosis Pathology. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a028936.	2.9	465
21	An updated histological classification system for multiple sclerosis lesions. Acta Neuropathologica, 2017, 133, 13-24.	3.9	436
22	Migratory Activity and Functional Changes of Green Fluorescent Effector Cells before and during Experimental Autoimmune Encephalomyelitis. Immunity, 2001, 14, 547-560.	6.6	428
23	Monocyte/macrophage differentiation in early multiple sclerosis lesions. Annals of Neurology, 1995, 38, 788-796.	2.8	427
24	NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain, 2012, 135, 886-899.	3.7	419
25	Iron and neurodegeneration in the multiple sclerosis brain. Annals of Neurology, 2013, 74, 848-861.	2.8	414
26	Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet, The, 2005, 366, 579-582.	6.3	411
27	Pathogenic Mechanisms Associated With Different Clinical Courses of Multiple Sclerosis. Frontiers in Immunology, 2018, 9, 3116.	2.2	405
28	Clinical and radiographic spectrum of pathologically confirmed tumefactive multiple sclerosis. Brain, 2008, 131, 1759-1775.	3.7	402
29	Multiple sclerosis: experimental models and reality. Acta Neuropathologica, 2017, 133, 223-244.	3.9	396
30	Patterns of oligodendroglia pathology in multiple sclerosis. Brain, 1994, 117, 1311-1322.	3.7	381
31	The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain, 2018, 141, 2066-2082.	3.7	368
32	Destruction of neurons by cytotoxic T cells: A new pathogenic mechanism in rasmussen's encephalitis. Annals of Neurology, 2002, 51, 311-318.	2.8	353
33	Bone marrow derived elements and resident microglia in brain inflammation. Glia, 1993, 7, 19-24.	2.5	344
34	Mitochondrial defects in acute multiple sclerosis lesions. Brain, 2008, 131, 1722-1735.	3.7	343
35	Slow expansion of multiple sclerosis iron rim lesions: pathology and 7ÂT magnetic resonance imaging. Acta Neuropathologica, 2017, 133, 25-42.	3.9	315
36	The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain, 2016, 139, 807-815.	3.7	307

#	Article	IF	CITATIONS
37	Targeting mi <scp>R</scp> â€155 restores abnormal microglia and attenuates disease in <scp>SOD</scp> 1 mice. Annals of Neurology, 2015, 77, 75-99.	2.8	295
38	Preferential Loss of Myelin-Associated Glycoprotein Reflects Hypoxia-Like White Matter Damage in Stroke and Inflammatory Brain Diseases. Journal of Neuropathology and Experimental Neurology, 2003, 62, 25-33.	0.9	283
39	Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 1386-1395.	0.9	280
40	Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity?. Brain, 2007, 130, 2800-2815.	3.7	272
41	Demyelination versus remyelination in progressive multiple sclerosis. Brain, 2010, 133, 2983-2998.	3.7	261
42	Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurology, The, 2021, 20, 762-772.	4.9	261
43	T cells specific for the myelin oligodendrocyte glycoprotein mediate an unusual autoimmune inflammatory response in the central nervous system. European Journal of Immunology, 1993, 23, 1364-1372.	1.6	257
44	The molecular basis of neurodegeneration in multiple sclerosis. FEBS Letters, 2011, 585, 3715-3723.	1.3	253
45	Apoptosis of T lymphocytes in experimental autoimmune encephalomyelitis. Evidence for programmed cell death as a mechanism to control inflammation in the brain. American Journal of Pathology, 1993, 143, 446-52.	1.9	251
46	Disease-specific molecular events in cortical multiple sclerosis lesions. Brain, 2013, 136, 1799-1815.	3.7	249
47	Pathology of multiple sclerosis and related inflammatory demyelinating diseases. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2014, 122, 15-58.	1.0	231
48	Mitochondrial dysfunction contributes to neurodegeneration in multiple sclerosis. Trends in Molecular Medicine, 2014, 20, 179-187.	3.5	225
49	The demyelinating potential of antibodies to myelin oligodendrocyte glycoprotein is related to their ability to fix complement. American Journal of Pathology, 1993, 143, 555-64.	1.9	225
50	In situ hybridization with digoxigenin-labeled probes: sensitive and reliable detection method applied to myelinating rat brain. Acta Neuropathologica, 1992, 84, 581-7.	3.9	217
51	The distribution of Ia antigen in the lesions of rat acute experimental allergic encephalomyelitis. Acta Neuropathologica, 1986, 70, 149-160.	3.9	214
52	Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation. Nature Communications, 2015, 6, 8164.	5.8	212
53	Antibody responses in chronic relapsing experimental allergic encephalomyelitis: correlation of serum demyelinating activity with antibody titre to the myelin/oligodendrocyte glycoprotein (MOG). Journal of Neuroimmunology, 1987, 17, 61-69.	1.1	210
54	Pathology and disease mechanisms in different stages of multiple sclerosis. Journal of the Neurological Sciences, 2013, 333, 1-4.	0.3	207

#	Article	IF	CITATIONS
55	The CD4–Th1 model for multiple sclerosis: a crucial re-appraisal. Trends in Immunology, 2004, 25, 132-137.	2.9	205
56	Neurodegeneration in multiple sclerosis and neuromyelitis optica. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 137-145.	0.9	205
57	The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody. Acta Neuropathologica, 2020, 139, 875-892.	3.9	205
58	Expression of Major Histocompatibility Complex class I Molecules on the Different Cell Types in Multiple Sclerosis Lesions. Brain Pathology, 2004, 14, 43-50.	2.1	201
59	Hypoxia-like tissue injury as a component of multiple sclerosis lesions. Journal of the Neurological Sciences, 2003, 206, 187-191.	0.3	199
60	Presence of six different lesion types suggests diverse mechanisms of tissue injury in neuromyelitis optica. Acta Neuropathologica, 2013, 125, 815-827.	3.9	199
61	Central Nervous System Disease in Langerhans Cell Histiocytosis. Journal of Pediatrics, 2010, 156, 873-881.e1.	0.9	193
62	Comparative Neuropathology of Chronic Experimental Allergic Encephalomyelitis and Multiple Sclerosis. Schriftenreihe Neurologie, 1983, , .	1.0	180
63	Epstein-Barr virus in the multiple sclerosis brain: a controversial issuereport on a focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain, 2011, 134, 2772-2786.	3.7	176
64	Axonal Pathology in Multiple Sclerosis. A Historical Note. Brain Pathology, 1999, 9, 651-656.	2.1	173
65	Myelin oligodendrocyte glycoprotein antibody-associated disease: an immunopathological study. Brain, 2020, 143, 1431-1446.	3.7	173
66	Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain, 2007, 130, 2789-2799.	3.7	167
67	Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 506-510.	1.8	157
68	Mechanisms of white matter damage in multiple sclerosis. Clia, 2014, 62, 1816-1830.	2.5	153
69	Inflammation induced by innate immunity in the central nervous system leads to primary astrocyte dysfunction followed by demyelination. Acta Neuropathologica, 2010, 120, 223-236.	3.9	150
70	Mice with an inactivation of the inducible nitric oxide synthase gene are susceptible to experimental autoimmune encephalomyelitis. European Journal of Immunology, 1998, 28, 1332-1338.	1.6	145
71	Differentiation between cellular apoptosis and necrosis by the combined use of in situ tailing and nick translation techniques. Laboratory Investigation, 1994, 71, 219-25.	1.7	145
72	Dysferlin Is a New Marker for Leaky Brain Blood Vessels in Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2006, 65, 855-865.	0.9	144

#	Article	IF	CITATIONS
73	Axonal and neuronal pathology in multiple sclerosis: What have we learnt from animal models. Experimental Neurology, 2010, 225, 2-8.	2.0	144
74	Pathogenicity of human antibodies against myelin oligodendrocyte glycoprotein. Annals of Neurology, 2018, 84, 315-328.	2.8	140
75	Fibrinogen Activates BMP Signaling in Oligodendrocyte Progenitor Cells and Inhibits Remyelination after Vascular Damage. Neuron, 2017, 96, 1003-1012.e7.	3.8	131
76	The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study. Neurolmage, 2018, 179, 117-133.	2.1	129
77	Long-term evolution of multiple sclerosis iron rim lesions in 7 T MRI. Brain, 2021, 144, 833-847.	3.7	126
78	PECAM-1 Stabilizes Blood-Brain Barrier Integrity and Favors Paracellular T-Cell Diapedesis Across the Blood-Brain Barrier During Neuroinflammation. Frontiers in Immunology, 2019, 10, 711.	2.2	122
79	Cutting Edge: Multiple Sclerosis-Like Lesions Induced by Effector CD8 T Cells Recognizing a Sequestered Antigen on Oligodendrocytes. Journal of Immunology, 2008, 181, 1617-1621.	0.4	119
80	Inflammatory demyelinating diseases of the central nervous system. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 145, 263-283.	1.0	117
81	Multiple sclerosis: Lessons from molecular neuropathology. Experimental Neurology, 2014, 262, 2-7.	2.0	112
82	Multiple Sclerosis Pathology: Evolution of Pathogenetic Concepts. Brain Pathology, 2005, 15, 217-222.	2.1	110
83	Pathologic heterogeneity persists in early active multiple sclerosis lesions. Annals of Neurology, 2014, 75, 728-738.	2.8	110
84	CCR5 blockade for neuroinflammatory diseases — beyond control of HIV. Nature Reviews Neurology, 2016, 12, 95-105.	4.9	109
85	Effective and selective immune surveillance of the brain by MHC class I-restricted cytotoxic T lymphocytes. European Journal of Immunology, 2003, 33, 1174-1182.	1.6	106
86	Human antibodies against the myelin oligodendrocyte glycoprotein can cause complement-dependent demyelination. Journal of Neuroinflammation, 2017, 14, 208.	3.1	105
87	Oxidative tissue injury in multiple sclerosis is only partly reflected in experimental disease models. Acta Neuropathologica, 2014, 128, 247-266.	3.9	103
88	Review: The architecture of inflammatory demyelinating lesions: implications for studies on pathogenesis. Neuropathology and Applied Neurobiology, 2011, 37, 698-710.	1.8	101
89	Diagnosis of inflammatory demyelination in biopsy specimens: a practical approach. Acta Neuropathologica, 2008, 115, 275-287.	3.9	100
90	Mechanisms of neurodegeneration shared between multiple sclerosis and Alzheimer's disease. Journal of Neural Transmission, 2011, 118, 747-752.	1.4	96

#	Article	IF	CITATIONS
91	Acute and non-resolving inflammation associate with oxidative injury after human spinal cord injury. Brain, 2021, 144, 144-161.	3.7	95
92	Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions. Acta Neuropathologica, 2017, 134, 45-64.	3.9	94
93	Multiple sclerosis: Is there neurodegeneration independent from inflammation?. Journal of the Neurological Sciences, 2007, 259, 3-6.	0.3	91
94	Inflammation in the nervous system: The human perspective. Glia, 2001, 36, 235-243.	2.5	90
95	Mechanisms underlying progression in multiple sclerosis. Current Opinion in Neurology, 2020, 33, 277-285.	1.8	88
96	IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation. Brain, 2016, 139, 1939-1957.	3.7	87
97	CD8+ T cell-mediated endotheliopathy is a targetable mechanism of neuro-inflammation in Susac syndrome. Nature Communications, 2019, 10, 5779.	5.8	87
98	Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts. Brain Pathology, 2018, 28, 791-805.	2.1	85
99	The Pathologic Substrate of Magnetic Resonance Alterations in Multiple Sclerosis. Neuroimaging Clinics of North America, 2008, 18, 563-576.	0.5	83
100	Injury and differentiation following inhibition of mitochondrial respiratory chain complex IV in rat oligodendrocytes. Glia, 2010, 58, 1827-1837.	2.5	83
101	Neuromyelitis optica should be classified as an astrocytopathic disease rather than a demyelinating disease. Clinical and Experimental Neuroimmunology, 2012, 3, 58-73.	0.5	79
102	Pain in neuromyelitis optica—prevalence, pathogenesis and therapy. Nature Reviews Neurology, 2014, 10, 529-536.	4.9	77
103	Proâ€inflammatory activation of microglia in the brain of patients with sepsis. Neuropathology and Applied Neurobiology, 2019, 45, 278-290.	1.8	76
104	Fulminant demyelinating encephalomyelitis. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e175.	3.1	75
105	T cell-activation in neuromyelitis optica lesions plays a role in their formation. Acta Neuropathologica Communications, 2013, 1, 85.	2.4	73
106	Hypothalamic Immunopathology in Anti-Ma–Associated Diencephalitis With Narcolepsy-Cataplexy. JAMA Neurology, 2013, 70, 1305-10.	4.5	73
107	Microglial Phenotypes and Functions in Multiple Sclerosis. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a028993.	2.9	73
108	Therapeutic inhibition of soluble brain TNF promotes remyelination by increasing myelin phagocytosis by microglia. JCI Insight, 2017, 2, .	2.3	72

#	Article	IF	CITATIONS
109	The pathology of multiple sclerosis and its evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 1635-1640.	1.8	71
110	Systematic evaluation of RNA quality, microarray data reliability and pathway analysis in fresh, fresh fresh frozen and formalin-fixed paraffin-embedded tissue samples. Scientific Reports, 2018, 8, 6351.	1.6	71
111	A single allele of <i>Hdac2</i> but not <i>Hdac1</i> is sufficient for normal mouse brain development in the absence of its paralog. Development (Cambridge), 2014, 141, 604-616.	1.2	70
112	Mechanisms of inflammation induced tissue injury in multiple sclerosis. Journal of the Neurological Sciences, 2008, 274, 45-47.	0.3	68
113	Autoimmune Aquaporin-4 Myopathy in Neuromyelitis Optica Spectrum. JAMA Neurology, 2014, 71, 1025.	4.5	68
114	Use of Magnetic Resonance Imaging to Visualize Leptomeningeal Inflammation in Patients With Multiple Sclerosis. JAMA Neurology, 2017, 74, 100.	4.5	68
115	Clinical course, pathological correlations, and outcome of biopsy proved inflammatory demyelinating disease. Journal of Neurology, Neurosurgery and Psychiatry, 2005, 76, 1693-1697.	0.9	67
116	Identifying Progression in Multiple Sclerosis: New Perspectives. Annals of Neurology, 2020, 88, 438-452.	2.8	67
117	Experimental models of multiple sclerosis. Revue Neurologique, 2007, 163, 651-655.	0.6	66
118	Analyzing microglial phenotypes across neuropathologies: a practical guide. Acta Neuropathologica, 2021, 142, 923-936.	3.9	65
119	New concepts on progressive multiple sclerosis. Current Neurology and Neuroscience Reports, 2007, 7, 239-244.	2.0	64
120	Models of multiple sclerosis: new insights into pathophysiology and repair. Current Opinion in Neurology, 2008, 21, 242-247.	1.8	62
121	Targets of therapy in progressive MS. Multiple Sclerosis Journal, 2017, 23, 1593-1599.	1.4	62
122	Translational value of choroid plexus imaging for tracking neuroinflammation in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	62
123	A central nervous system B-cell lymphoma arising two years after initial diagnosis of CLIPPERS. Journal of the Neurological Sciences, 2014, 344, 224-226.	0.3	58
124	Targeting latency-associated peptide promotes antitumor immunity. Science Immunology, 2017, 2, .	5.6	58
125	Mechanisms of demyelination and tissue destruction in multiple sclerosis. Clinical Neurology and Neurosurgery, 2002, 104, 168-171.	0.6	57
126	Fibroblast growth factor signalling in multiple sclerosis: inhibition of myelination and induction of pro-inflammatory environment by FGF9. Brain, 2015, 138, 1875-1893.	3.7	56

#	Article	IF	CITATIONS
127	Circulating AQP4-specific auto-antibodies alone can induce neuromyelitis optica spectrum disorder in the rat. Acta Neuropathologica, 2019, 137, 467-485.	3.9	56
128	Highly encephalitogenic aquaporin 4-specific T cells and NMO-IgG jointly orchestrate lesion location and tissue damage in the CNS. Acta Neuropathologica, 2015, 130, 783-798.	3.9	55
129	Progressive multifocal leukoencephalopathy and immune reconstitution inflammatory syndrome (IRIS). Acta Neuropathologica, 2015, 130, 751-764.	3.9	55
130	Acute microglia ablation induces neurodegeneration in the somatosensory system. Nature Communications, 2018, 9, 4578.	5.8	55
131	Role of IL-33 and ST2 signalling pathway in multiple sclerosis: expression by oligodendrocytes and inhibition of myelination in central nervous system. Acta Neuropathologica Communications, 2016, 4, 75.	2.4	54
132	Complement C3 on microglial clusters in multiple sclerosis occur in chronic but not acute disease: Implication for disease pathogenesis. Glia, 2017, 65, 264-277.	2.5	54
133	Adhesion of T Cells to Endothelial Cells Facilitates Blinatumomab-Associated Neurologic Adverse Events. Cancer Research, 2020, 80, 91-101.	0.4	54
134	Neuroinflammatory responses in experimental and human stroke lesions. Journal of Neuroimmunology, 2018, 323, 10-18.	1.1	52
135	Impaired plasticity of macrophages in X-linked adrenoleukodystrophy. Brain, 2018, 141, 2329-2342.	3.7	52
136	A new paraclinical CSF marker for hypoxiaâ€like tissue damage in multiple sclerosis lesions. Brain, 2003, 126, 1347-1357.	3.7	51
137	Iron homeostasis, complement, and coagulation cascade as CSF signature of cortical lesions in early multiple sclerosis. Annals of Clinical and Translational Neurology, 2019, 6, 2150-2163.	1.7	51
138	Microglial nodules provide the environment for pathogenic T cells in human encephalitis. Acta Neuropathologica, 2019, 137, 619-635.	3.9	51
139	Experimental Models of Neuromyelitis Optica. Brain Pathology, 2014, 24, 74-82.	2.1	48
140	Mechanisms for lesion localization in neuromyelitis optica spectrum disorders. Current Opinion in Neurology, 2018, 31, 325-333.	1.8	48
141	Enhanced axonal response of mitochondria to demyelination offers neuroprotection: implications for multiple sclerosis. Acta Neuropathologica, 2020, 140, 143-167.	3.9	48
142	Widespread inflammation in CLIPPERS syndrome indicated by autopsy and ultra-high-field 7T MRI. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e226.	3.1	47
143	The changing concepts in the neuropathology of acquired demyelinating central nervous system disorders. Current Opinion in Neurology, 2019, 32, 313-319.	1.8	44
144	Experimental Demyelination and Axonal Loss Are Reduced in MicroRNA-146a Deficient Mice. Frontiers in Immunology, 2018, 9, 490.	2.2	43

#	Article	IF	CITATIONS
145	After Injection into the Striatum, in Vitro-Differentiated Microglia- and Bone Marrow-Derived Dendritic Cells Can Leave the Central Nervous System via the Blood Stream. American Journal of Pathology, 2008, 173, 1669-1681.	1.9	42
146	Cortical lesions in multiple sclerosis: inflammation versus neurodegeneration. Brain, 2012, 135, 2904-2905.	3.7	42
147	Aquaporin 4-specific T cells and NMO-IgG cause primary retinal damage in experimental NMO/SD. Acta Neuropathologica Communications, 2016, 4, 82.	2.4	41
148	Iron related changes in MS lesions and their validity to characterize MS lesion types and dynamics with Ultraâ€high field magnetic resonance imaging. Brain Pathology, 2018, 28, 743-749.	2.1	40
149	Staging of astrocytopathy and complement activation in neuromyelitis optica spectrum disorders. Brain, 2021, 144, 2401-2415.	3.7	39
150	Pathophysiology of inflammation and tissue injury in multiple sclerosis: What are the targets for therapy. Journal of the Neurological Sciences, 2011, 306, 167-169.	0.3	37
151	Recent neuropathological findings in MS?implications for diagnosis and therapy. Journal of Neurology, 2004, 251, IV2-5.	1.8	36
152	What drives disease in multiple sclerosis: Inflammation or neurodegeneration?. Clinical and Experimental Neuroimmunology, 2010, 1, 2-11.	0.5	36
153	Mannan-conjugated myelin peptides prime non-pathogenic Th1 and Th17 cells and ameliorate experimental autoimmune encephalomyelitis. Experimental Neurology, 2015, 267, 254-267.	2.0	36
154	Neuropathological Variability within a Spectrum of <scp>NMDAR</scp> â€Encephalitis. Annals of Neurology, 2021, 90, 725-737.	2.8	35
155	Transcript profiling of different types of multiple sclerosis lesions yields FGF1 as a promoter of remyelination. Acta Neuropathologica Communications, 2014, 2, 168.	2.4	34
156	Pathology of inflammatory diseases of the nervous system: Human disease versus animal models. Glia, 2020, 68, 830-844.	2.5	33
157	Expression of Cell Deathâ€Associated Proteins in Neuronal Apoptosis Associated with Pontosubicular Neuron Necrosis. Brain Pathology, 2001, 11, 273-281.	2.1	31
158	Neuropathological Techniques to Investigate Central Nervous System Sections in Multiple Sclerosis. Methods in Molecular Biology, 2014, 1304, 211-229.	0.4	31
159	Oxidative Injury and Iron Redistribution Are Pathological Hallmarks of Marmoset Experimental Autoimmune Encephalomyelitis. Journal of Neuropathology and Experimental Neurology, 2017, 76, 467-478.	0.9	29
160	Male sex chromosomal complement exacerbates the pathogenicity of Th17 cells in a chronic model of central nervous system autoimmunity. Cell Reports, 2021, 34, 108833.	2.9	29
161	Orthologous proteins of experimental de- and remyelination are differentially regulated in the CSF proteome of multiple sclerosis subtypes. PLoS ONE, 2018, 13, e0202530.	1.1	28
162	Stem cell and progenitor cell transplantation in multiple sclerosis: The discrepancy between neurobiological attraction and clinical feasibility. Journal of the Neurological Sciences, 2005, 233, 83-86.	0.3	27

#	Article	IF	CITATIONS
163	Expression of Deathâ€related Proteins in Dentate Granule Cells in Human Bacterial Meningitis. Brain Pathology, 2001, 11, 422-431.	2.1	25
164	Acute disseminated encephalomyelitis and multiple sclerosis. Brain, 2010, 133, 317-319.	3.7	25
165	Fundamentally different roles of neuronal TNF receptors in CNS pathology: TNFR1 and IKKÎ ² promote microglial responses and tissue injury in demyelination while TNFR2 protects against excitotoxicity in mice. Journal of Neuroinflammation, 2021, 18, 222.	3.1	25
166	Apoptosis of T lymphocytes in acute disseminated encephalomyelitis. Acta Neuropathologica, 1999, 97, 543-546.	3.9	24
167	Iron Heterogeneity in Early Active Multiple Sclerosis Lesions. Annals of Neurology, 2021, 89, 498-510.	2.8	22
168	Immune-mediated disorders. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 145, 285-299.	1.0	21
169	Differences in T cell cytotoxicity and cell death mechanisms between progressive multifocal leukoencephalopathy, herpes simplex virus encephalitis and cytomegalovirus encephalitis. Acta Neuropathologica, 2017, 133, 613-627.	3.9	19
170	Perturbation of gut microbiota decreases susceptibility but does not modulate ongoing autoimmune neurological disease. Journal of Neuroinflammation, 2020, 17, 79.	3.1	19
171	Clinical Correlation of Multiple Sclerosis Immunopathologic Subtypes. Neurology, 2021, 97, e1906-e1913.	1.5	18
172	Autoimmune encephalitis in humans: how closely does it reflect multiple sclerosis ?. Acta Neuropathologica Communications, 2015, 3, 80.	2.4	17
173	Demyelination and neurodegeneration in multiple sclerosis: The role of hypoxia. Annals of Neurology, 2016, 79, 520-521.	2.8	17
174	Communication of CD 8 + T cells with mononuclear phagocytes in multiple sclerosis. Annals of Clinical and Translational Neurology, 2019, 6, 1151-1164.	1.7	17
175	7 T Magnetic Resonance Spectroscopic Imaging in Multiple Sclerosis. Investigative Radiology, 2019, 54, 247-254.	3.5	17
176	Mannan-MOG35-55 Reverses Experimental Autoimmune Encephalomyelitis, Inducing a Peripheral Type 2 Myeloid Response, Reducing CNS Inflammation, and Preserving Axons in Spinal Cord Lesions. Frontiers in Immunology, 2020, 11, 575451.	2.2	15
177	Experimental Neuromyelitis Optica Induces a Type I Interferon Signature in the Spinal Cord. PLoS ONE, 2016, 11, e0151244.	1.1	15
178	The contribution of neuropathology to multiple sclerosis research. European Journal of Neurology, 2022, 29, 2869-2877.	1.7	15
179	Microvessels may Confound the "Swallow Tail Sign―in Normal Aged Midbrains: A Postmortem 7 T SWâ€MRI Study. Journal of Neuroimaging, 2019, 29, 65-69.	1.0	14
180	BMP receptor blockade overcomes extrinsic inhibition of remyelination and restores neurovascular homeostasis. Brain, 2021, 144, 2291-2301.	3.7	13

#	Article	IF	CITATIONS
181	Relapsing–remitting and primary progressive MS have the same cause(s) – the neuropathologist's view: 1. Multiple Sclerosis Journal, 2013, 19, 266-267.	1.4	12
182	Microglia pre-activation and neurodegeneration precipitate neuroinflammation without exacerbating tissue injury in experimental autoimmune encephalomyelitis. Acta Neuropathologica Communications, 2019, 7, 14.	2.4	12
183	<scp>Magnetic Resonance Imaging</scp> Correlates of Multiple Sclerosis Immunopathological Patterns. Annals of Neurology, 2021, 90, 440-454.	2.8	12
184	Archeological neuroimmunology: resurrection of a pathogenic immune response from a historical case sheds light on human autoimmune encephalomyelitis and multiple sclerosis. Acta Neuropathologica, 2021, 141, 67-83.	3.9	11
185	Deficiency of the complement regulator CD59a enhances disease severity, demyelination and axonal injury in murine acute experimental allergic encephalomyelitis. Laboratory Investigation, 2004, 84, 21-28.	1.7	11
186	KIR4.1: another misleading expectation in multiple sclerosis?. Lancet Neurology, The, 2014, 13, 753-755.	4.9	10
187	Omics-Based Approach Reveals Complement-Mediated Inflammation in Chronic Lymphocytic Inflammation With Pontine Perivascular Enhancement Responsive to Steroids (CLIPPERS). Frontiers in Immunology, 2018, 9, 741.	2.2	10
188	CNS inflammation after natalizumab therapy for multiple sclerosis: A retrospective histopathological and CSF cohort study. Brain Pathology, 2021, 31, e12969.	2.1	10
189	Targeting intracerebral inflammation in multiple sclerosis: is it feasible?. Acta Neuropathologica, 2012, 124, 395-396.	3.9	9
190	Role of a Novel Human Leukocyte Antigen-DQA1*01:02;DRB1*15:01 Mixed Isotype Heterodimer in the Pathogenesis of "Humanized―Multiple Sclerosis-like Disease. Journal of Biological Chemistry, 2015, 290, 15260-15278.	1.6	7
191	The birth of oligodendrocytes in the anatomical and neuropathological literature: the seminal contribution of PÃo del RÃo-Hortega. , 2012, 31, 435-436.		6
192	Spinal cord pathology in multiple sclerosis. Lancet Neurology, The, 2015, 14, 348-349.	4.9	6
193	TPP2 mutation associated with sterile brain inflammation mimicking MS. Neurology: Genetics, 2018, 4, e285.	0.9	6
194	Multiple Sclerosis Pathology and its Reflection by Imaging Technologies: Introduction. Brain Pathology, 2018, 28, 721-722.	2.1	6
195	Iron accumulation in the choroid plexus, ependymal cells and CNS parenchyma in a rat strain with Iowâ€grade haemolysis of fragile macrocytic red blood cells. Brain Pathology, 2021, 31, 333-345.	2.1	6
196	Cortical, subcortical and spinal alterations in neuroimmunological diseases. Journal of Neurology, 2007, 254, II15-II17.	1.8	5
197	Induction of aquaporin 4-reactive antibodies in Lewis rats immunized with aquaporin 4 mimotopes. Acta Neuropathologica Communications, 2020, 8, 49.	2.4	5
198	Peripheral Hemolysis in Relation to Iron Rim Presence and Brain Volume in Multiple Sclerosis. Frontiers in Neurology, 0, 13, .	1.1	5

#	Article	IF	CITATIONS
199	TIRC7 and HLA-DR axis contributes to inflammation in multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 1171-1181.	1.4	4
200	Neurologic autoimmunity. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 133, 121-143.	1.0	4
201	Tissue donations for multiple sclerosis research: current state and suggestions for improvement. Brain Communications, 2022, 4, fcac094.	1.5	4
202	CNS neuroimmunology seen by a neuropathologist. Revue Neurologique, 2014, 170, 561-563.	0.6	2
203	PDE10A antibodies in autoimmune encephalitis. Neurology, 2019, 93, 327-328.	1.5	2
204	Heterogeneity of Multiple Sclerosis: Implications for Therapy Targeting Regeneration. , 2005, , 11-22.		2
205	Nitrosative Stress Molecules in Multiple Sclerosis: A Meta-Analysis. Biomedicines, 2021, 9, 1899.	1.4	2
206	Karl Vass, 1958–2012. Multiple Sclerosis Journal, 2012, 18, 1666-1667.	1.4	1
207	Genetic Control of Nerve Conduction Velocity May Influence Multiple Sclerosis Phenotype. American Journal of Pathology, 2014, 184, 2369-2370.	1.9	1
208	A case report of simultaneous PML-IRIS during corticosteroids tapering in a patient with an anti-synthetase syndrome. F1000Research, 2013, 2, 283.	0.8	1
209	Tumefactive multiple sclerosis or inflammatory demyelinating disease with large lesions?. European Journal of Neurology, 2022, 29, 687-688.	1.7	1
210	Henry de Forest Webster (1927–2012). Acta Neuropathologica, 2013, 125, 311-312.	3.9	0
211	Kurt Jellinger 90: his contribution to neuroimmunology. Journal of Neural Transmission, 2021, 128, 1545-1550.	1.4	0