Ruli Borah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/173289/publications.pdf

Version: 2024-02-01

677142 687363 41 572 13 22 citations h-index g-index papers 49 49 49 601 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Study of photocatalytic properties of clay intercalated semiconductor composite material of guanidinium tetrachloroferrate for oxidative degradation of model dye in sunlight. Journal of Materials Science: Materials in Electronics, 2022, 33, 2461.	2.2	O
2	Solvent responsive self-separation behaviour of BrÃ, nsted acidic ionic liquid-polyoxometalate hybrid catalysts on H2O2 mediated oxidation of alcohols. Polyhedron, 2021, 196, 114993.	2.2	6
3	Development of N,N-disulfo-1,1,3,3-tetramethylguanidinium Chlorometallates as Heterogeneous Catalysts for One Pot Synthesis of 1,2-dihydro-1- aryl-3H-naphth $[1, 2-e][1,3]$ oxazin-3-one Derivatives. Current Organocatalysis, 2021, 8, 172-186.	0.5	2
4	Brönsted Acidic Ionic Liquids Catalysed Sequential Michaelâ€Like Addition of Indole with Chalcones via Claisenâ€Schmidt Condensation. ChemistrySelect, 2020, 5, 3041-3047.	1.5	12
5	A brief insight into the physicochemical properties of room-temperature acidic ionic liquids and their catalytic applications in C C bond formation reactions. Advances in Physical Organic Chemistry, 2020, , 1-98.	0.5	3
6	2â€Methylâ€1,3â€disulfoimidazolium polyoxometalate hybrid catalytic systems as equivalent safer alternatives to concentrated sulfuric acid in nitration of aromatic compounds. Applied Organometallic Chemistry, 2019, 33, e5146.	3.5	5
7	Oneâ€Pot Sequential Synthesis of 2â€Aminoâ€4, 6â€Diaryl Pyrimidines Involving SO 3 Hâ€Functionalized Piperaziniumâ€Based Dicationic Ionic Liquids as Homogeneous Catalysts. ChemistrySelect, 2019, 4, 8751-8756.	1.5	11
8	Supported dualâ€acidic 1,3â€disulfoimidazolium chlorozincate@HZSMâ€5 as a promising heterogeneous catalyst for synthesis of indole derivatives. Applied Organometallic Chemistry, 2019, 33, e4672.	3.5	3
9	Comparative study of the physical and electrochemical behavior of direct N-SO3H functionalized 1, 3-disulfo-2-alkyl-imidazolium trifluoroacetate ionic liquids in molecular solvents. Journal of Molecular Liquids, 2019, 289, 111099.	4.9	11
10	Design of Water Stable 1,3â€Dialkyl―2â€Methyl Imidazolium Basic Ionic Liquids as Reusable Homogeneous Catalysts for Azaâ€Michael Reaction in Neat Condition. ChemistrySelect, 2019, 4, 3479-3485.	1.5	11
11	1,3-Disulfoimidazolium chloronickellate immobilized HZSM-5 framework as visible-light-induced heterogeneous photocatalyst for advanced oxidation process. New Journal of Chemistry, 2018, 42, 3867-3877.	2.8	3
12	Diethyldisulfoammonium chlorometallates as heterogeneous Brønsted–Lewis acidic catalysts for oneâ€pot synthesis of 14â€arylâ€₹â€(Nâ€phenyl)â€14Hâ€dibenzo[a¸j]acridines. Applied Organometallic Chemis 32, e3900.	str ş,5 2018,	8
13	Investigation of PEG-6000 bridged $$\hootherm{\hoother	1.5	5
14	Synthesis of Triethylamineâ€Bridged Basic Tricationic Ionic Liquids and Evaluation of Their Catalytic Efficiencies for Preparation of Arylidene or Alkylidenemalononitrile. ChemistrySelect, 2018, 3, 9476-9483.	1.5	1
15	Acidic and Basic Functionalized Ionic Liquid Systems for Advanced Synthesis of Five and Six Membered Nitrogenates Heterocycles. Advances in Organic Synthesis, 2018, , 139-196.	0.5	1
16	Studies on Structural Changes and Catalytic Activity of Y-zeolite Composites of 1,3-disulfoimidazolium trifluoroacetate Ionic Liquid (IL) for Three Component Synthesis of 3,4-dihydropyrimidinones. Catalysis Letters, 2017, 147, 674-685.	2.6	8
17	Design and Exploration of –SO3H Group Functionalized Brønsted Acidic Ionic Liquids (BAILs) as Task-Specific Catalytic Systems for Organic Reactions: A Review of Literature. Catalysis Surveys From Asia, 2017, 21, 70-93.	2.6	19
18	N,N-disulfo-1,1,3,3-tetramethylguanidinium carboxylate ionic liquids as reusable homogeneous catalysts for multicomponent synthesis of tetrahydrobenzo[a]xanthene and tetrahydrobenzo[a]acridine derivatives. Journal of Molecular Liquids, 2017, 225, 585-591.	4.9	16

#	Article	IF	CITATIONS
19	Triphenylsulfophosphonium chlorometallates as efficient heterogeneous catalysts for the three-component synthesis of 2,3-dihydro-1,2,3-trisubstituted-1H-naphth[1,2-e][1,3]oxazines. Polyhedron, 2017, 123, 184-191.	2.2	8
20	Heterogenized hybrid catalyst of 1-sulfonic acid-3-methyl imidazolium ferric chloride over NaY zeolite for one-pot synthesis of 2-amino-4-arylpyrimidine derivatives: A viable approach. Applied Catalysis A: General, 2016, 523, 321-331.	4.3	17
21	Studies on –SO ₃ H functionalized Brønsted acidic imidazolium ionic liquids (ILs) for one-pot, two-step synthesis of 2-styrylquinolines. Synthetic Communications, 2016, 46, 1187-1196.	2.1	9
22	Design of multifaceted acidic 1,3-disulfoimidazolium chlorometallate ionic systems as heterogeneous catalysts for the preparation of \hat{l}^2 -amino carbonyl compounds. Journal of Molecular Catalysis A, 2016, 416, 63-72.	4.8	29
23	Development of Environmentally Benign Methods Towards the Synthesis of anti-2,3-dihydro-1,2,3-trisubstituted-1H-naphth $[1,2-e][1,3]$ oxazines Using Br \tilde{A}_{j} nsted Acidic Catalysts. Catalysis Letters, 2016, 146, 902-908.	2.6	8
24	3-Methyl-1-sulfoimidazolium ionic liquids as recyclable medium for efficient synthesis of quinoline derivatives by FriedlÃ ¤ der annulation. Monatshefte Fýr Chemie, 2015, 146, 173-180.	1.8	10
25	Design of Supported Organocatalysts from Carboxylic Acids for the Mannich-Type Synthesis of \hat{l}^2 /font>-Amino Carbonyl Compounds. Synthetic Communications, 2015, 45, 2810-2822.	2.1	2
26	Development of Brönsted–Lewis acidic solid catalytic system of 3-methyl-1-sulfonic acid imidazolium transition metal chlorides for the preparation of bis(indolyl)methanes. Applied Catalysis A: General, 2015, 492, 133-139.	4.3	37
27	Investigation of Keto-enol Tautomers during the Synthesis of Aryl-bis (2-hydroxy-1-naphthyl)Methanes. Journal of Chemical Sciences, 2014, 126, 1629-1634.	1.5	2
28	Dual nature of polyethylene glycol under microwave irradiation for the clean synthesis of oximes. Monatshefte FA¼r Chemie, 2014, 145, 505-508.	1.8	8
29	Synthesis of anti-2,3-dihydro-1,2,3-trisubstituted-1H-naphth [1,2-e][1,3]oxazine derivatives via multicomponent approach. RSC Advances, 2014, 4, 10912.	3.6	18
30	Synthesis of dibenzoxanthene and acridine derivatives catalyzed by $1,3$ -disulfonic acid imidazolium carboxylate ionic liquids. RSC Advances, $2014, 4, 41287-41291$.	3.6	51
31	P4VP-H ₂ SO ₄ -Catalyzed Chemoselective Protection of Aldehydes to Acylal Along with Deprotection Reactions. Synthetic Communications, 2013, 43, 1378-1386.	2.1	4
32	Investigation of Prins reaction for the synthesis of 2, 4- disubstituted tetrahydropyran derivatives and 1, 3-dioxanes using polyaniline supported acid as reusable catalyst. Journal of Chemical Sciences, 2011, 123, 623-630.	1.5	5
33	Poly(4-vinylpyridine)-supported sulfuric acid: an efficient solid acid catalyst for the synthesis of coumarin derivatives under solvent-free conditions. Monatshefte Fýr Chemie, 2011, 142, 1253-1257.	1.8	19
34	Synthesis, Characterization and Application of Poly(4-vinylpyridine)-Supported BrÃ,nsted Acid as Reusable Catalyst for Acetylation Reaction. Bulletin of the Korean Chemical Society, 2011, 32, 225-228.	1.9	13
35	A new protocol for Biginelli (or like) reaction under solvent-free grinding method using Fe (NO ₃) ₃ .9H ₂ O as catalyst. Green Chemistry Letters and Reviews, 2010, 3, 329-334.	4.7	34
36	Aza-Michael Addition of Amines to ${\rm cont}_{\hat{l}\pm-Unsaturated Compounds Using Molecular Iodine as Catalyst. Synthetic Communications, 2010, 40, 2830-2836.$	2.1	51

Ruli Borah

#	Article	IF	CITATIONS
37	Henry reaction in environmentally benign methods using imidazole as catalyst. Green Chemistry Letters and Reviews, 2009, 2, 249-253.	4.7	42
38	Synthesis of 1,3-Dioxanes Catalyzed by TsOH-SiO2 Under Solvent-Free Conditions. Synthetic Communications, 2008, 38, 3082-3087.	2.1	9
39	Imidazole-Catalyzed Henry Reactions in Aqueous Medium. Synthetic Communications, 2008, 38, 3068-3073.	2.1	18
40	Green Synthesis of Tetraalkylammonium Tribromide using Cerium(IV) Ammonium Nitrate (CAN) as Oxidant. Synthetic Communications, 2007, 37, 933-939.	2.1	12
41	Synthesis of new dinuclear and mononuclear peroxovanadium(V) complexes containing biogenic co-ligands: a comparative study of some of their properties. Polyhedron, 2004, 23, 1097-1107.	2.2	41