
Michael J Mcmahon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1732549/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constitutive Androstane Receptor 1 is Constitutively Bound to Chromatin and 'Primed' for Transactivation in Hepatocytes. Molecular Pharmacology, 2019, 95, 97-105.	1.0	12
2	Measuring <i>in vivo</i> responses to endogenous and exogenous oxidative stress using a novel haem oxygenase 1 reporter mouse. Journal of Physiology, 2018, 596, 105-127.	1.3	22
3	Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2. Toxicology and Applied Pharmacology, 2018, 360, 45-57.	1.3	29
4	Olaparib, Monotherapy or with Ionizing Radiation, Exacerbates DNA Damage in Normal Tissues: Insights from a New p21 Reporter Mouse. Molecular Cancer Research, 2016, 14, 1195-1203.	1.5	24
5	Aldo-keto reductases are biomarkers of NRF2 activity and are co-ordinately overexpressed in non-small cell lung cancer. British Journal of Cancer, 2016, 115, 1530-1539.	2.9	31
6	Targeting the Ataxia Telangiectasia Mutated-null phenotype in chronic lymphocytic leukemia with pro-oxidants. Haematologica, 2015, 100, 1076-85.	1.7	13
7	HDAC Inhibitors Increase NRF2-Signaling in Tumour Cells and Blunt the Efficacy of Co-Adminstered Cytotoxic Agents. PLoS ONE, 2014, 9, e114055.	1.1	21
8	Application of next-generation reporter mouse models to study stress responses in vivo. Toxicology Letters, 2014, 229, S16.	0.4	0
9	Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene, 2013, 32, 3765-3781.	2.6	500
10	SCF/β-TrCP Promotes Glycogen Synthase Kinase 3-Dependent Degradation of the Nrf2 Transcription Factor in a Keap1-Independent Manner. Molecular and Cellular Biology, 2011, 31, 1121-1133.	1.1	647
11	Cancer Chemoprevention Mechanisms Mediated Through the Keap1–Nrf2 Pathway. Antioxidants and Redox Signaling, 2010, 13, 1713-1748.	2.5	476
12	Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18838-18843.	3.3	368
13	p62/SQSTM1 Is a Target Gene for Transcription Factor NRF2 and Creates a Positive Feedback Loop by Inducing Antioxidant Response Element-driven Gene Transcription. Journal of Biological Chemistry, 2010, 285, 22576-22591.	1.6	1,158
14	Cross-talk between Transcription Factors AhR and Nrf2: Lessons for Cancer Chemoprevention from Dioxin. Toxicological Sciences, 2009, 111, 199-201.	1.4	90
15	1-Cyano-2,3-epithiopropane is a novel plant-derived chemopreventive agent which induces cytoprotective genes that afford resistance against the genotoxic Â,Â-unsaturated aldehyde acrolein. Carcinogenesis, 2009, 30, 1754-1762.	1.3	36
16	Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1–NRF2 pathway, and not the BACH1–NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds. Carcinogenesis, 2009, 30, 1571-1580.	1.3	273
17	NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends in Biochemical Sciences, 2009, 34, 176-188.	3.7	764
18	Oxidative stress and the Nrf1 and Nrf2 transcription factors. Toxicology Letters, 2007, 172, S10.	0.4	0

MICHAEL J MCMAHON

#	Article	IF	CITATIONS
19	Dimerisation of adaptor protein Keap1 is required to correctly position Nrf2 for ubiquitylation upon the Cul3â€Rbx1 holoenzyme: the †fixedâ€ends' model. FASEB Journal, 2007, 21, A1020.	0.2	0
20	The Double-Edged Sword of Nrf2: Subversion of Redox Homeostasis during the Evolution of Cancer. Molecular Cell, 2006, 21, 732-734.	4.5	126
21	The determination of total germanium in real food samples including Chinese herbal remedies using graphite furnace atomic absorption spectroscopy. Food Chemistry, 2006, 97, 411-417.	4.2	38
22	Dimerization of Substrate Adaptors Can Facilitate Cullin-mediated Ubiquitylation of Proteins by a "Tethering―Mechanism. Journal of Biological Chemistry, 2006, 281, 24756-24768.	1.6	422
23	Utility of siRNA against Keap1 as a strategy to stimulate a cancer chemopreventive phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7280-7285.	3.3	118
24	Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome. Archives of Biochemistry and Biophysics, 2005, 433, 342-350.	1.4	187
25	Redox-regulated Turnover of Nrf2 Is Determined by at Least Two Separate Protein Domains, the Redox-sensitive Neh2 Degron and the Redox-insensitive Neh6 Degron. Journal of Biological Chemistry, 2004, 279, 31556-31567.	1.6	336
26	Activation of hepatic Nrf2in vivo by acetaminophen in CD-1 mice. Hepatology, 2004, 39, 1267-1276.	3.6	188
27	Antioxidant and cytoprotective responses to redox stress. Biochemical Society Symposia, 2004, 71, 157-176.	2.7	98
28	Keap1-dependent Proteasomal Degradation of Transcription Factor Nrf2 Contributes to the Negative Regulation of Antioxidant Response Element-driven Gene Expression. Journal of Biological Chemistry, 2003, 278, 21592-21600.	1.6	963
29	Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence. Biochemical Journal, 2003, 374, 337-348.	1.7	427
30	Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice. Biochemical Journal, 2002, 365, 405-416.	1.7	399
31	Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention. Cancer Letters, 2001, 174, 103-113.	3.2	302
32	Reduction of Aflatoxin B1 Dialdehyde by Rat and Human Aldo-keto Reductases. Chemical Research in Toxicology, 2001, 14, 727-737.	1.7	64
33	The use of in vitro immunisation, as an adjunct to monoclonal antibody production, may result in the production of hybridomas secreting polyreactive antibodies. Journal of Immunological Methods, 2001, 258, 27-36.	0.6	7
34	Reply to Bouvet et al Journal of Immunological Methods, 2001, 257, 224.	0.6	0
35	The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin. Biochemical Society Transactions, 2000, 28, 33-41.	1.6	305
36	Polyreactivity as an acquired artefact, rather than a physiologic property, of antibodies: evidence that monoreactive antibodies may gain the ability to bind to multiple antigens after exposure to low pH. Journal of Immunological Methods, 2000, 241, 1-10.	0.6	77