Lyazid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1731803/publications.pdf

Version: 2024-02-01

135	2,591	27 h-index	46
papers	citations		g-index
143	143 docs citations	143	1246
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Transport equations for the normalized <i>n</i> th-order moments of velocity derivatives in grid turbulence. Journal of Fluid Mechanics, 2022, 930, .	1.4	1
2	Approach to the $4/3$ law for turbulent pipe and channel flows examined through a reformulated scale-by-scale energy budget. Journal of Fluid Mechanics, 2022, 931, .	1.4	5
3	Outer turbulent boundary layer similarities for different 2D surface roughnesses at matched Reynolds number. International Journal of Heat and Fluid Flow, 2022, 94, 108940.	1.1	5
4	Kármán–Howarth solutions of homogeneous isotropic turbulence. Journal of Fluid Mechanics, 2022, 932, .	1.4	3
5	Flow characterization in the uphill region of pulsed oblique round jet. Physics of Fluids, 2022, 34, .	1.6	6
6	Study of a rough-wall turbulent boundary layer under pressure gradient. Journal of Fluid Mechanics, 2022, 938, .	1.4	4
7	A new equivalent sand grain roughness relation for two-dimensional rough wall turbulent boundary layers. Journal of Fluid Mechanics, 2022, 940, .	1.4	10
8	Mathematical constraints on the scaling exponents in the inertial range of fluid turbulence. Physics of Fluids, 2021, 33, .	1.6	4
9	Reynolds number effect on the response of a rough wall turbulent boundary layer to local wall suction. Journal of Fluid Mechanics, 2021, 916, .	1.4	5
10	Sensitivity analysis of the second and third-order velocity structure functions to the Reynolds number in decaying and forced isotropic turbulence using the EDQNM model. European Journal of Mechanics, B/Fluids, 2021, 88, 229-242.	1.2	2
11	Spatial resolution effects on measurements in a rough wall turbulent boundary layer. Experiments in Fluids, 2021, 62, 1.	1.1	6
12	Combined effect of roughness and suction on heat transfer in a laminar channel flow. International Communications in Heat and Mass Transfer, 2021, 126, 105377.	2.9	4
13	Effect of pulsation on the wall jet flow in the near region of an impinging jet. Experiments in Fluids, 2021, 62, 1.	1.1	3
14	Modeling the third-order velocity structure function in the scaling range at finite Reynolds numbers. Journal of Mathematical Physics, 2021, 62, 083102.	0.5	3
15	Study of the interaction of two decaying grid-generated turbulent flows. Physics of Fluids, 2021, 33, 095122.	1.6	6
16	Dynamics of wall jet flow under external pulsation. Physics of Fluids, 2021, 33, 095103.	1.6	4
17	Estimation of mean turbulent kinetic energy and temperature variance dissipation rates using a spectral chart method. Physics of Fluids, 2020, 32, 055109.	1.6	3
18	Assessment of large-scale forcing in isotropic turbulence using a closed Kármán–Howarth equation. Physics of Fluids, 2020, 32, 055104.	1.6	6

#	Article	IF	CITATIONS
19	Scaling of the turbulent energy dissipation correlation function. Journal of Fluid Mechanics, 2020, 891, .	1.4	9
20	Experimental study of flow characteristics of an oblique impinging jet. Experiments in Fluids, 2020, 61, 1.	1.1	20
21	Roughness effect in an initially laminar channel flow. Journal of Fluid Mechanics, 2020, 892, .	1.4	10
22	K41 Versus K62: Recent Developments. Lecture Notes in Mechanical Engineering, 2019, , 3-14.	0.3	1
23	Scale invariance in finite Reynolds number homogeneous isotropic turbulence. Journal of Fluid Mechanics, 2019, 864, 244-272.	1.4	14
24	A velocity defect chart method for estimating the friction velocity in turbulent boundary layers. Fluid Dynamics Research, 2019, 51, 045502.	0.6	10
25	An empirical expression for on the axis of a slightly heated turbulent round jet. Journal of Fluid Mechanics, 2019, 867, 392-413.	1.4	1
26	Effects of wall suction on a 2D rough wall turbulent boundary layer. Experiments in Fluids, 2019, 60, 1.	1.1	6
27	Can small-scale turbulence approach a quasi-universal state?. Physical Review Fluids, 2019, 4, .	1.0	7
28	Finite Reynolds number effect and the 4/5 law. Physical Review Fluids, 2019, 4, .	1.0	22
29	Behaviour of the energy dissipation coefficient in a rough wall turbulent boundary layer. Experiments in Fluids, 2018, 59, 1.	1.1	7
30	Reynolds number effect on the velocity derivative flatness factor. Journal of Fluid Mechanics, 2018, 856, 426-443.	1.4	6
31	Reappraisal of the velocity derivative flatness factor in various turbulent flows. Journal of Fluid Mechanics, 2018, 847, 244-265.	1.4	20
32	Secondary vortex street in the intermediate wake of a circular cylinder. Experiments in Fluids, 2018, 59, 1.	1.1	3
33	Can a turbulent boundary layer become independent of the Reynolds number?. Journal of Fluid Mechanics, 2018, 851, 1-22.	1.4	14
34	Bypass transition mechanism in a rough wall channel flow. Physical Review Fluids, 2018, 3, .	1.0	5
35	Small scale turbulence and the finite Reynolds number effect. Physics of Fluids, 2017, 29, .	1.6	29
36	Finite Reynolds number effect on the scaling range behaviour of turbulent longitudinal velocity structure functions. Journal of Fluid Mechanics, 2017, 820, 341-369.	1.4	26

#	Article	IF	Citations
37	On the normalized dissipation parameter in decaying turbulence. Journal of Fluid Mechanics, 2017, 817, 61-79.	1.4	28
38	A note on the velocity derivative flatness factor in decaying HIT. Physics of Fluids, 2017, 29, 051702.	1.6	6
39	Self-preservation relation to the Kolmogorov similarity hypotheses. Physical Review Fluids, 2017, 2, .	1.0	10
40	Skewness and flatness factors of the longitudinal velocity derivative in wall-bounded flows. Physical Review Fluids, 2017, 2, .	1.0	13
41	Boundedness of the mixed velocity-temperature derivative skewness in homogeneous isotropic turbulence. Physics of Fluids, 2016, 28, 095102.	1.6	2
42	Complete self-preservation along the axis of a circular cylinder far wake. Journal of Fluid Mechanics, 2016, 786, 253-274.	1.4	17
43	Self-preservation in a zero pressure gradient rough-wall turbulent boundary layer. Journal of Fluid Mechanics, 2016, 788, 57-69.	1.4	15
44	Complete self-preservation on the axis of a turbulent round jet. Journal of Fluid Mechanics, 2016, 790, 57-70.	1.4	18
45	Towards local isotropy of higher-order statistics in the intermediate wake. Experiments in Fluids, 2016, 57, 1.	1.1	2
46	Turbulent Kinetic Energy Budget in the Far Field of a Square Cylinder Wake. Lecture Notes in Mechanical Engineering, 2016, , 169-174.	0.3	0
47	Towards Local Isotropy of Higher Order Statistics in Wakes. Springer Proceedings in Physics, 2016, , 119-124.	0.1	0
48	A general self-preservation analysis for decaying homogeneous isotropic turbulence. Journal of Fluid Mechanics, 2015, 773, 345-365.	1.4	17
49	Transport equation for the mean turbulent energy dissipation rate on the centreline of a fully developed channel flow. Journal of Fluid Mechanics, 2015, 777, 151-177.	1.4	23
50	Heat transfer in a turbulent channel flow with square bars or circular rods on one wall. Journal of Fluid Mechanics, 2015, 776, 512-530.	1.4	38
51	Power-law exponent in the transition period of decay in grid turbulence. Journal of Fluid Mechanics, 2015, 779, 544-555.	1.4	29
52	Boundedness of the velocity derivative skewness in various turbulent flows. Journal of Fluid Mechanics, 2015, 781, 727-744.	1.4	41
53	Transport equation for the isotropic turbulent energy dissipation rate in the far-wake of a circular cylinder. Journal of Fluid Mechanics, 2015, 784, 109-129.	1.4	21
54	Scale-by-scale energy budget in a turbulent boundary layer over a rough wall. International Journal of Heat and Fluid Flow, 2015, 55, 2-8.	1.1	4

#	Article	IF	CITATIONS
55	Drag of a turbulent boundary layer with transverse 2D circular rods on the wall. Experiments in Fluids, 2015, 56, 1.	1.1	15
56	The lattice Boltzmann method and the problem of turbulence. AIP Conference Proceedings, 2015, , .	0.3	1
57	Comparison between velocity- and vorticity-based POD methods in a turbulent wake. Experiments in Fluids, 2015, 56, 1.	1.1	14
58	Effects of Low Reynolds Number on Decay Exponent in Grid Turbulence. Procedia Engineering, 2014, 90, 327-332.	1.2	1
59	Statistics of the turbulent kinetic energy dissipation rate and its surrogates in a square cylinder wake flow. Physics of Fluids, 2014, 26, .	1.6	11
60	Empirical Correlations for Slightly Heated Decaying Passive-Grid Turbulence. Heat Transfer Engineering, 2014, 35, 1482-1490.	1.2	1
61	Collapse of the turbulent dissipative range on Kolmogorov scales. Physics of Fluids, 2014, 26, .	1.6	31
62	Breakdown of Kolmogorov's first similarity hypothesis in grid turbulence. Journal of Turbulence, 2014, 15, 596-610.	0.5	15
63	On self-preservation and log-similarity in a slightly heated axisymmetric mixing layer. Physics of Fluids, 2014, 26, 075106.	1.6	5
64	Use of PIV to highlight possible errors in hot-wire Reynolds stress data over a 2D rough wall. Experiments in Fluids, 2014, 55, 1.	1.1	3
65	Transport equation for the mean turbulent energy dissipation rate in low-grid turbulence. Journal of Fluid Mechanics, 2014, 747, 288-315.	1.4	10
66	Consequences of self-preservation on the axis of a turbulent round jet. Journal of Fluid Mechanics, 2014, 748, .	1.4	36
67	Kármán-Howarth closure equation on the basis of a universal eddy viscosity. Physical Review E, 2013, 88, 011003.	0.8	19
68	The Effects of Magnetic Field on the Fluid Flow through a Rotating Straight Duct with Large Aspect Ratio. Procedia Engineering, 2013, 56, 239-244.	1.2	2
69	Relationship between temporal and spatial averages in grid turbulence. Journal of Fluid Mechanics, 2013, 730, 593-606.	1.4	14
70	On the destruction coefficients for slightly heated decaying grid turbulence. International Journal of Heat and Fluid Flow, 2013, 43, 129-136.	1.1	17
71	Invariants for slightly heated decaying grid turbulence. Journal of Fluid Mechanics, 2013, 727, 379-406.	1.4	15
72	Effect of Mesh Grids on the Turbulent Mixing Layer of an Axisymmetric Jet. Heat Transfer Engineering, 2013, 34, 1216-1225.	1.2	5

#	Article	lF	CITATIONS
73	Scaling range of velocity and passive scalar spectra in grid turbulence. Physics of Fluids, 2012, 24, .	1.6	9
74	Decay of passive-scalar fluctuations in slightly stretched grid turbulence. Experiments in Fluids, 2012, 53, 909-923.	1.1	5
75	A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate. Experiments in Fluids, 2012, 53, 1005-1013.	1.1	24
76	On the anisotropy of a low-Reynolds-number grid turbulence. Journal of Fluid Mechanics, 2012, 702, 332-353.	1.4	17
77	Destruction coefficients for mean dissipation rates in grid turbulence. , 2012, , .		0
78	Turbulent crossbar wake with passive scalar. Symposium on Turbulence, Heat and Mass Transfer. , 2012, , .		0
79	Momentum and scalar transport in a localised synthetic turbulence in a channel flow with a short contraction. Journal of Physics: Conference Series, 2011, 318, 052047.	0.3	0
80	Spectrum of a passive scalar in stretched grid turbulence at low Reynolds numbers. Journal of Physics: Conference Series, 2011, 318, 052046.	0.3	1
81	Effect of a small axisymmetric contraction on grid turbulence. Experiments in Fluids, 2010, 49, 3-10.	1.1	11
82	Near-field measurements and development of a new boundary layer over a flat plate with localized suction. Experiments in Fluids, 2010, 48, 747-762.	1.1	2
83	POD Analysis of the Near-Wall Region of a Rough Wall Turbulent Boundary Layer. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2010, , 49-54.	0.1	1
84	Lattice Boltzmann Simulation of Pulsed Jet inÂT-Shaped Micromixer. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2009, , 167-174.	0.1	0
85	Momentum and heat transport in a three-dimensional transitional wake of a heated square cylinder. Journal of Fluid Mechanics, 2009, 640, 109-129.	1.4	19
86	Simulation of gas flow in microchannels with a single bend. Computers and Fluids, 2009, 38, 1629-1637.	1.3	28
87	Anisotropy measurements in the boundary layer over a flat plate with suction. Experimental Thermal and Fluid Science, 2009, 33, 1106-1111.	1.5	7
88	Structure of a turbulent crossbar near-wake studied by means of lattice Boltzmann simulation. Physical Review E, 2008, 77, 036310.	0.8	11
89	Effects of initial conditions in decaying turbulence generated by passive grids. Journal of Fluid Mechanics, 2007, 585, 395-420.	1.4	155
90	Examination of anisotropy of the small-scale motion in a perturbed low Reynolds number turbulent boundary layer. Experimental Thermal and Fluid Science, 2007, 32, 309-315.	1.5	1

#	Article	IF	CITATIONS
91	Influence of localised double suction on a turbulent boundary layer. Journal of Fluids and Structures, 2007, 23, 787-798.	1.5	7
92	A turbulent boundary layer over a two-dimensional rough wall. Experiments in Fluids, 2007, 44, 37-47.	1.1	54
93	Response of mean turbulent energy dissipation rate and spectra to concentrated wall suction. Experiments in Fluids, 2007, 44, 159-165.	1.1	3
94	Near-Wake Decaying Turbulence Behind a Cross-bar., 2007,, 633-635.		0
95	Numerical investigation of laminar mixing in a coaxial microreactor. Journal of Fluid Mechanics, 2006, 568, 223.	1.4	13
96	Lattice-Boltzmann simulation of grid-generated turbulence. Journal of Fluid Mechanics, 2006, 552, 13.	1.4	55
97	Investigation of flow around a pair of side-by-side square cylinders using the lattice Boltzmann method. Computers and Fluids, 2006, 35, 1093-1107.	1.3	130
98	Guidelines for Modeling a 2D Rough Wall Channel Flow. Flow, Turbulence and Combustion, 2006, 77, 41-57.	1.4	10
99	Microfluidic characteristics of a multi-holed baffle plate micro-reactor. International Journal of Heat and Fluid Flow, 2006, 27, 1069-1077.	1.1	21
100	Power law of decaying homogeneous isotropic turbulence at low Reynolds number. Physical Review E, 2006, 73, 066304.	0.8	38
101	Effect of initial conditions on decaying grid turbulence at low R λ. Experiments in Fluids, 2005, 39, 865-874.	1.1	46
102	Spanwise vorticity measurements in a perturbed boundary layer. Experiments in Fluids, 2005, 39, 152-155.	1.1	1
103	Simulation of gas flow in microchannels with a sudden expansion or contraction. Journal of Fluid Mechanics, 2005, 530, 135-144.	1.4	74
104	Interaction Between Wakes Shed by Two Side-by-Side Square Cylinders., 2005,,.		0
105	Effect of a 2-D Rough Wall on the Anisotropy of a Turbulent Channel Flow. , 2005, , 207-216.		0
106	Velocity and Passive Scalar Characteristics in a Round Jet with Grids at the Nozzle Exit. Flow, Turbulence and Combustion, 2004, 72, 199-218.	1.4	19
107	Structure of turbulent channel flow with square bars on one wall. International Journal of Heat and Fluid Flow, 2004, 25, 384-392.	1.1	116
108	LIF based detection of low-speed streaks. Experiments in Fluids, 2004, 36, 600-603.	1.1	4

#	Article	IF	Citations
109	Influence of localised wall suction on the anisotropy of the Reynolds stress tensor in a turbulent boundary layer. Experiments in Fluids, 2004, 37, 187-193.	1.1	31
110	Combined influence of the Reynolds number and localised wall suction on a turbulent boundary layer. Experiments in Fluids, 2003, 35, 199-206.	1.1	30
111	Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. Journal of Fluid Mechanics, 2003, 491, 229-238.	1.4	325
112	Reynolds stress anisotropy of turbulent rough wall layers. Experiments in Fluids, 2002, 33, 31-37.	1.1	67
113	CALCULATION OF A LOW-SHEAR TURBULENT BOUNDARY LAYER USING A SECOND-MOMENT ORDER CLOSURE. , 2002, , 413-422.		0
114	Streamwise evolution of a high-Schmidt-number passive scalar in a turbulent plane wake. Experiments in Fluids, 2001, 31, 186-192.	1.1	10
115	Calculation of the effect of concentrated wall suction on a turbulent boundary layer using a second-order moment closure. International Journal of Heat and Fluid Flow, 2001, 22, 487-494.	1.1	11
116	Self-preservation of rough-wall turbulent boundary layers. European Journal of Mechanics, B/Fluids, 2001, 20, 591-602.	1.2	31
117	Characteristics of fluorescein dye and temperature fluctuations in a turbulent near-wake. Experiments in Fluids, 2000, 28, 462-470.	1.1	5
118	The turbulent boundary layer over transverse square cavities. Journal of Fluid Mechanics, 1999, 395, 271-294.	1.4	136
119	Modeling of the Reynolds Stress Transport Equation. AIAA Journal, 1997, 35, 450-455.	1.5	7
120	Advantages of using a power law in a low R \hat{l}_s turbulent boundary layer. Experiments in Fluids, 1997, 22, 348-350.	1.1	16
121	The measurement of in a turbulent boundary layer over a riblet surface. International Journal of Heat and Fluid Flow, 1997, 18, 183-187.	1.1	4
122	Modeling of the Reynolds stress transport equation. AIAA Journal, 1997, 35, 450-455.	1.5	2
123	Laser Doppler anemometer measurements of turbulent boundary layer over a riblet surface. AIAA Journal, 1996, 34, 1007-1012.	1.5	17
124	Low Reynolds Number Effects on the Inner Region of a Turbulent Boundary Layer., 1996,, 3-15.		3
125	Riblet modelling using a second-moment closure. Flow, Turbulence and Combustion, 1995, 54, 249-266.	0.2	6
126	Low-Reynolds-number effects in a turbulent boundary layer. Experiments in Fluids, 1995, 19, 61-68.	1.1	49

#	Article	IF	CITATION
127	Anisotropy of the dissipation tensor in a turbulent boundary layer. Physics of Fluids, 1994, 6, 2475-2479.	1.6	40
128	Laminar boundary layer over riblets. Physics of Fluids, 1994, 6, 2993-2999.	1.6	33
129	LDA measurements in a turbulent boundary layer over a d-type rough wall. Experiments in Fluids, 1994, 16, 323-329.	1.1	32
130	LDA measurements in low Reynolds number turbulent boundary layer. Experiments in Fluids, 1993, 14, 280-288.	1.1	27
131	Riblet flow calculation with a low Reynolds number \hat{I}^2 - $\hat{I}\mu$ model. Flow, Turbulence and Combustion, 1993, 50, 267-282.	0.2	5
132	Riblet flow calculation with a low Reynolds number k - $\hat{l}\mu$ model. Fluid Mechanics and Its Applications, 1993, , 267-282.	0.1	4
133	High resolution conformal mesh computations for V, U or L groove riblets in laminar and turbulent boundary layers. Fluid Mechanics and Its Applications, 1991, , 65-92.	0.1	9
134	Effect of Riblets on either Fully Developed Boundary Layers or Internal Flows in Laminar Regime. Fluid Mechanics and Its Applications, 1990, , 141-157.	0.1	2
135	Numerical and experimental investigation of the laminar boundary layer over riblets. Flow, Turbulence and Combustion, 1989, 46, 263-270.	0.2	11