Takashi Ishizone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1731145/publications.pdf

Version: 2024-02-01

153 papers

4,657 citations

36 h-index 60 g-index

157 all docs

157 docs citations

157 times ranked

3621 citing authors

#	Article	IF	CITATIONS
1	Living Anionic Polymerization of 4-Halostyrenes. Macromolecules, 2021, 54, 1489-1498.	2.2	6
2	Living Anionic Addition Reaction of 1,1-Diphenylethylene Derivatives: One-Pot Synthesis of ABC-type Chain-End Sequence-Controlled Polymers. Journal of the American Chemical Society, 2021, 143, 11296-11301.	6.6	15
3	Effect of molecular weight and architecture on nanoscale viscoelastic heterogeneity at the surface of polymer films. Polymer, 2021, 228, 123923.	1.8	0
4	Selective Anionic Polymerization of 2,5-Divinylthiophene Derivatives. Macromolecules, 2021, 54, 8173-8181.	2.2	2
5	Polymerizability of exomethylene monomers based on adamantyl frameworks. Polymer Chemistry, 2021, 12, 3602-3611.	1.9	5
6	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.	1.1	69
7	Surface characterization of amphiphilic block copolymers possessing polyisoprene and poly[tri(ethylene glycol) methacrylate] segments and the effect of side chain l‰-function on surface energy. Polymer, 2020, 190, 122257.	1.8	5
8	Allylidene Monomers: Anionically Polymerizable 1,1-Disubstituted 1,3-Diene Derivatives. Macromolecules, 2020, 53, 10107-10116.	2.2	10
9	Synthesis of chain end acyl-functionalized polymers by living anionic polymerization: versatile precursors for H-shaped polymers. Polymer Chemistry, 2019, 10, 3951-3959.	1.9	6
10	Nanoscale film morphology and property characteristics of dielectric polymers bearing monomeric and dimeric adamantane units. Polymer, 2019, 169, 225-233.	1.8	12
11	Control of crystal orientation of spatially confined PCL homopolymers by cleaving chain-ends of PCL blocks tethered to nanolamella interfaces. Polymer, 2019, 181, 121786.	1.8	4
12	Synthesis of a well-defined alternating copolymer of 1,1-diphenylethylene and <i>tert</i> -butyldimethylsilyloxymethyl substituted styrene by anionic copolymerization: toward tailored graft copolymers with controlled side chain densities. Polymer Chemistry, 2019, 10, 6413-6422.	1.9	11
13	Combined effects of confinement size and chain-end tethering on the crystallization of poly($\hat{l}\mu$ -caprolactone) chains in nanolamellae. Polymer, 2019, 160, 73-81.	1.8	8
14	Living Anionic Polymerization of 4â€(1â€Adamantyl)â€Î±â€Methylstyrene. Macromolecular Chemistry and Physics 2018, 219, 1700450.	[;] ,1.1	13
15	Living Anionic Polymerization – Part II: Further Expanding the Synthetic Versatility for Novel Polymer Architectures. Macromolecular Chemistry and Physics, 2018, 219, 1700567.	1.1	3
16	Living anionic polymerization of 1,4-divinylbenzene and its derivatives. Reactive and Functional Polymers, 2018, 127, 94-112.	2.0	7
17	Bioinspired structural transition of synthetic polymers through biomolecular ligand binding. Chemical Communications, 2018, 54, 12006-12009.	2.2	8
18	Synthesis of polymers carrying adamantyl substituents in side chain. Polymer Journal, 2018, 50, 805-819.	1.3	18

#	Article	IF	CITATIONS
19	A thermoresponsive dynamic polymer brush fabricated by the segregation of amphiphilic diblock copolymers. Soft Matter, 2018, 14, 5930-5935.	1.2	7
20	Crystal orientation of poly($\hat{l}\mu$ -caprolactone) chains confined in lamellar nanodomains: Effects of chain-ends tethering to nanodomain interfaces. Polymer, 2017, 112, 116-124.	1.8	10
21	Anionic Polymerization of Divinylbenzenes Possessing Methoxy Group. Macromolecular Chemistry and Physics, 2017, 218, 1600550.	1.1	7
22	Synthesis and surface characterization of well-defined amphiphilic block copolymers composed of polydimethylsiloxane and poly[oligo(ethylene glycol) methacrylate]. RSC Advances, 2017, 7, 25199-25207.	1.7	10
23	A Segregation and Deprotection Approach for Hydrophilic Surfaces Using Amphiphilic Block Copolymers Possessing Polystyrene and Poly[(tri(ethylene glycol) methacrylate)] Segments. Macromolecular Chemistry and Physics, 2017, 218, 1700048.	1.1	3
24	Living Anionic Polymerization Celebrates 60 Years: Unique Features and Polymer Architectures. Macromolecular Chemistry and Physics, 2017, 218, 1700217.	1.1	10
25	Living Anionic Polymerization of 1â€Adamantyl 4â€vinylphenyl ketone. Macromolecular Chemistry and Physics, 2017, 218, 1700015.	1.1	13
26	Effects of Bulky End-Groups on the Crystallization Kinetics of Poly($\hat{l}\mu$ -caprolactone) Homopolymers Confined in a Cylindrical Nanodomain. Macromolecules, 2017, 50, 7202-7210.	2.2	21
27	Tunable magneto-responsive mesoporous block copolymer membranes. Journal of Membrane Science, 2017, 544, 406-415.	4.1	12
28	Macromol. Chem. Phys. 5/2016. Macromolecular Chemistry and Physics, 2016, 217, 721-721.	1.1	0
29	Synthesis and Characterization of Multicomponent ABC- and ABCD-Type Miktoarm Star-Branched Polymers Containing a Poly(3-hexylthiophene) Segment. ACS Macro Letters, 2016, 5, 631-635.	2.3	24
30	Biomimetic Synthesis of Antireflective Silica/Polymer Composite Coatings Comprising Vesicular Nanostructures. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26309-26318.	4.0	12
31	Tunable Thermoresponsive Mesoporous Block Copolymer Membranes. Macromolecules, 2016, 49, 7886-7896.	2.2	15
32	Tailored Synthesis of Triblock Co- and Terpolymers Composed of Synthetically Difficult Sequence Orders by Combining Living Anionic Polymerization with Specially Designed Linking Reaction. Macromolecular Chemistry and Physics, 2016, 217, 622-635.	1.1	4
33	Syntheses of exactly-defined multi-graft polymers with two or more graft chains per branch point by a new iterative methodology. Polymer Chemistry, 2016, 7, 2078-2086.	1.9	16
34	Affinity-based thermoresponsive precipitation of proteins modified with polymer-binding peptides. Chemical Communications, 2016, 52, 5670-5673.	2.2	18
35	Living Anionic Polymerization of Divinylbenzene Derivatives. Kobunshi Ronbunshu, 2015, 72, 395-409.	0.2	0
36	Living Anionic Polymerization of Benzofulvene in Hydrocarbon Solvent. Macromolecular Symposia, 2015, 350, 55-66.	0.4	12

3

#	Article	IF	Citations
37	Successive Synthesis of Multiarmed and Multicomponent Starâ€Branched Polymers by New Iterative Methodology Based on Linking Reaction between Block Copolymer Inâ€Chain Anion and αâ€Phenylacrylateâ€Functionalized Polymer. Macromolecular Chemistry and Physics, 2015, 216, 1523-1533.	1.1	15
38	Synthesis and Characterization of ABC-Type Asymmetric Star Polymers Comprised of Poly(3-hexylthiophene), Polystyrene, and Poly(2-vinylpyridine) Segments. Macromolecules, 2015, 48, 245-255.	2.2	33
39	High Anionic Polymerizability of Benzofulvene: New Exo-Methylene Hydrocarbon Monomer. Macromolecules, 2015, 48, 4421-4430.	2.2	30
40	Precise Synthesis of Novel Star-Branched Polymers Containing Reactive Poly(1,4-divinylbenzene) Arm(s) by Linking Reaction of Living Anionic Poly(1,4-divinylbenzene) with Chain-($\hat{1}$ ±-Phenyl) Tj ETQq0 0 0 rgBT /Overloc	k 1 2 . 1 f 50	61178Td (acry
41	Effects of Chain-Ends Tethering on the Crystallization Behavior of Poly($\hat{l}\mu$ -caprolactone) Confined in Lamellar Nanodomains. Macromolecules, 2015, 48, 7138-7145.	2.2	23
42	Precise Synthesis of New Exactly Defined Graft Copolymers Made up of Poly(alkyl methacrylate)s by Iterative Methodology Using Living Anionic Polymerization. Macromolecules, 2015, 48, 8307-8314.	2.2	12
43	Anionic Polymerization of Polar Vinyl Monomers: Vinylpyridines, (Meth)acrylates, (Meth)acrylamides, (Meth)acrylonitrile, Phenyl Vinyl Sulfoxide, Benzofulvene, and Other Monomers., 2015,, 127-189.		8
44	Living Anionic Polymerization of \hat{l}_{\pm} -Methyleneindane: An Exo-Methylene Hydrocarbon Monomer. Macromolecules, 2015, 48, 6900-6908.	2.2	7
45	Living Anionic Polymerization of 1,4-Diisopropenylbenzene. Macromolecules, 2015, 48, 3230-3238.	2.2	13
46	Living Anionic Polymerization of <i>N</i> -(1-Adamantyl)- <i>N</i> -4-vinylbenzylideneamine and <i>N</i> -(2-Adamantyl)- <i>N</i> -(3-N-(4-vinylbenzylideneamine: Effects of Adamantyl Groups on Polymerization Behaviors and Thermal Properties. Macromolecules, 2015, 48, 8489-8496.	2.2	11
47	Advances in Living Anionic Polymerization: From Functional Monomers, Polymerization Systems, to Macromolecular Architectures. Macromolecules, 2014, 47, 1883-1905.	2.2	220
48	Nonvolatile organic field-effect transistor memory devices using polymer electrets with different thiophene chain lengths. Polymer Chemistry, 2014, 5, 1063-1071.	1.9	57
49	Synthesis of Well-Defined Novel Reactive Block Polymers Containing a Poly(1,4-divinylbenzene) Segment by Living Anionic Polymerization. Macromolecules, 2014, 47, 2333-2339.	2.2	34
50	Crystallization behavior of poly($\hat{l}\mu$ -caprolactone) chains confined in lamellar nanodomains. Polymer, 2014, 55, 4394-4400.	1.8	25
51	Synthesis of well-controlled graft polymers by living anionic polymerization towards exact graft polymers. Polymer Chemistry, 2014, 5, 5523.	1.9	60
52	Living Anionic Addition Polymerization. , 2014, , 1-18.		0
53	Crystallization Behavior of Poly($\hat{l}\mu$ -caprolactone) Chains Confined in Nanocylinders: Effects of Block Chains Tethered to Nanocylinder Interfaces. Macromolecules, 2013, 46, 2199-2205.	2.2	32
54	Successive synthesis of well-defined multiarmed miktoarm star polymers by iterative methodology using living anionic polymerization. European Polymer Journal, 2013, 49, 2545-2566.	2.6	37

#	Article	IF	Citations
55	Living Anionic Polymerization of 1,4-Divinylbenzene and Its Isomers. Macromolecules, 2013, 46, 146-154.	2.2	29
56	Successive Synthesis of Miktoarm Star Polymers Having up to Seven Arms by a New Iterative Methodology Based on Living Anionic Polymerization Using a Trifunctional Lithium Reagent. Macromolecules, 2013, 46, 819-827.	2.2	50
57	Living Anionic Polymerization of Benzofulvene: Highly Reactive Fixed Transoid 1,3-Diene. ACS Macro Letters, 2013, 2, 164-167.	2.3	46
58	Synthesis and ring-opening reaction of novel 1,3-dehydroadamantanes possessing phenyl and alkoxyl substituents. Tetrahedron, 2013, 69, 3238-3248.	1.0	7
59	Synthesis of 1,3-Dehydroadamantanes Possessing Alkyl, Phenyl, and Alkoxy Substituents by Intramolecular Wurtz-Type Coupling Reaction of 1,3-Dibromoadamantanes. Synthesis, 2013, 45, 3332-3340.	1.2	6
60	Precise Synthesis of Block Polymers Composed of Three or More Blocks by Specially Designed Linking Methodologies in Conjunction with Living Anionic Polymerization System. Polymers, 2013, 5, 1012-1040.	2.0	47
61	Cationic ring-opening polymerization of novel 1,3-dehydroadamantanes with various alkyl substituents: Synthesis of thermally stable poly(1,3-adamantane)s. Journal of Polymer Science Part A, 2013, 51, 4111-4124.	2.5	8
62	Anionic Polymerization Behavior of αâ€Methyleneâ€ <i>N</i> à€methylpyrrolidone. Macromolecular Symposia, 2013, 323, 86-91.	0.4	12
63	Precise Synthesis of New Triblock Co―and Terpolymers by a Methodology Combining Living Anionic Polymers with a Specially Designed Linking Reaction. Macromolecular Symposia, 2013, 323, 26-36.	0.4	14
64	Local Conformation and Relaxation of Polystyrene at Substrate Interface. Macromolecules, 2012, 45, 4643-4649.	2.2	95
65	Ring-Opening Polymerizations of 1,3-Dehydroadamantanes: Synthesis of Novel Thermally Stable Poly(1,3-adamantane)s. Macromolecules, 2012, 45, 4184-4195.	2.2	32
66	Crystallization Behavior and Crystal Orientation of Poly($\hat{l}\mu$ -caprolactone) Homopolymers Confined in Nanocylinders: Effects of Nanocylinder Dimension. Macromolecules, 2012, 45, 1892-1900.	2.2	78
67	Thermally robust nanocellular thin films of high-Tg semifluorinated block copolymers foamed with supercritical carbon dioxide. Soft Matter, 2011, 7, 4032.	1.2	23
68	Selective Ring-Opening Polymerization of Glycidyl Methacrylate: Toward the Synthesis of Cross-Linked (Co)polyethers with Thermoresponsive Properties. Macromolecules, 2011, 44, 6356-6364.	2.2	42
69	General and Facile Approach to Exact Graft Copolymers by Iterative Methodology Using Living Anionic In-Chain-Functionalized AB Diblock Copolymers as Key Building Blocks. Macromolecules, 2011, 44, 3302-3311.	2.2	29
70	Facile Synthesis of Triblock Co- and Terpolymers of Styrene, 2-Vinylpyridine, and Methyl Methacrylate by a New Methodology Combining Living Anionic Diblock Copolymers with a Specially Designed Linking Reaction. Macromolecules, 2011, 44, 6345-6355.	2.2	30
71	Synthesis of water-soluble poly[oligo(ethylene glycol) methacrylate]s by living anionic polymerization of oligo(ethylene glycol) vinyl ether methacrylates. Polymer Chemistry, 2011, 2, 1837.	1.9	17
72	Living Anionic Polymerization of 1,4-Divinylbenzene. Macromolecules, 2011, 44, 4579-4582.	2.2	35

#	Article	IF	CITATIONS
73	Facile Synthetic Approach to Exact Graft (Co)polymers and Double-Tailed Polystyrene: Linking Reaction of Living Anionic Polymers with Specially Designed In-Chain-Multifunctionalized Polystyrenes. Macromolecules, 2011, 44, 5638-5649.	2.2	34
74	Precise synthesis of thermo-responsive and water-soluble star-branched polymers and star block copolymers by living anionic polymerization. European Polymer Journal, 2011, 47, 713-722.	2.6	11
75	Crystal Orientation of Poly(ε-caprolactone) Homopolymers Confined in Cylindrical Nanodomains. Macromolecules, 2010, 43, 3916-3923.	2.2	65
76	Living Anionic Polymerization of N-Methacryloylazetidine: Anionic Polymerizability of N,N-Dialkylmethacrylamides. Macromolecules, 2010, 43, 107-116.	2.2	32
77	Two dimensional nano-dot array engineering of block copolymer surface micelles on water surface. Thin Solid Films, 2009, 518, 724-728.	0.8	4
78	Synthesis of well-defined random and block copolymers of 2-(1-adamantyl)-1,3-butadiene with isoprene via anionic polymerization. Reactive and Functional Polymers, 2009, 69, 409-415.	2.0	25
79	Synthesis of Well-Defined Poly(ethylene- <i>alt</i> -1-vinyladamantane) via Living Anionic Polymerization of 2-(1-Adamantyl)-1,3-butadiene, Followed by Hydrogenation. Macromolecules, 2009, 42, 5017-5026.	2.2	31
80	Living anionic polymerization of styrenes containing adamantyl skeletons. Journal of Physics: Conference Series, 2009, 184, 012017.	0.3	3
81	Living Anionic Polymerization of <i>N</i> â€Methacryloylâ€2â€methylaziridine. Macromolecular Symposia, 2009, 279, 21-28.	0.4	2
82	Synthesis of Polymers Containing Adamantyl Skeletons. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009, 67, 156-165.	0.0	1
83	Living Anionic Polymerization of <i>N</i> -Methacryloyl-2-methylaziridine:  Polymerizable <i>N,N</i> -Dialkylmethacrylamide. Macromolecules, 2008, 41, 1929-1936.	2.2	21
84	Crystallization of Homopolymers Confined in Spherical or Cylindrical Nanodomains. Macromolecules, 2008, 41, 1915-1918.	2.2	52
85	Synthesis and Properties of New Thermoplastic Elastomers Containing Poly[4-(1-adamantyl)styrene] Hard Segments. Macromolecules, 2008, 41, 5502-5508.	2.2	39
86	Anionic Polymerizations of Oligo(ethylene glycol) Alkyl Ether Methacrylates: Effect of Side Chain Length and ï‰-Alkyl Group of Side Chain on Cloud Point in Water. Macromolecules, 2008, 41, 2963-2967.	2.2	133
87	Reduced Hydrophobic Interaction of Polystyrene Surfaces by Spontaneous Segregation of Block Copolymers with Oligo (Ethylene Glycol) Methyl Ether Methacrylate Blocks: Force Measurements in Water Using Atomic Force Microscope with Hydrophobic Probes. Langmuir, 2008, 24, 5527-5533.	1.6	21
88	Syntheses and Crosslinking Reactions of Polymers Containing Aziridinyl Groups. Kobunshi Ronbunshu, 2007, 64, 688-696.	0.2	2
89	Anionic Polymerization of N-Methacryloyl-2-methylaziridine and N-Methacryloylazetidine. Macromolecular Symposia, 2007, 249-250, 412-416.	0.4	4
90	Spontaneous Copolymerization of 1,3-Dehydroadamantane. Macromolecular Symposia, 2007, 249-250, 373-377.	0.4	4

#	Article	IF	Citations
91	Potassium enolates of N,N-dialkylamides as initiators of anionic polymerization. Journal of Polymer Science Part A, 2007, 45, 1260-1271.	2.5	11
92	Formation of Alternating Copolymers via Spontaneous Copolymerization of 1,3-Dehydroadamantane with Electron-Deficient Vinyl Monomers. Journal of the American Chemical Society, 2006, 128, 8708-8709.	6.6	29
93	Synthesis and Surface Characterization of Well-Defined Amphiphilic Block Copolymers Containing Poly[oligo(ethylene glycol) methacrylate] Segments. Macromolecules, 2006, 39, 962-970.	2.2	48
94	Living Anionic Polymerizations of 4-(1-Adamantyl)styrene and 3-(4-Vinylphenyl)-1,1â€~-biadamantane. Macromolecules, 2006, 39, 5979-5986.	2.2	39
95	Cationic Ring-Opening Polymerization of 1,3-Dehydroadamantanes. Macromolecular Symposia, 2006, 240, 206-212.	0.4	10
96	Living anionic polymerization of N-methoxymethyl-N-isopropylacrylamide: Synthesis of well-defined poly(N-isopropylacrylamide) having various stereoregularity. Journal of Polymer Science Part A, 2006, 44, 4832-4845.	2.5	94
97	Salt resistivity of poly (4-vinyl benzoic acid) gel. Colloid and Polymer Science, 2006, 285, 485-489.	1.0	8
98	Surface Characterization of Block Copolymers with Water-soluble Block by using Sum-Frequency Generation Spectroscopy. E-Journal of Surface Science and Nanotechnology, 2006, 4, 515-520.	0.1	8
99	Synthesis of well-defined polymers end-functionalized with crosslinkable aziridine groups by living anionic polymerization. Journal of Polymer Science Part A, 2005, 43, 4126-4135.	2.5	17
100	Spontaneously Formed Hydrophilic Surfaces by Segregation of Block Copolymers with Water-Soluble Blocks. Macromolecules, 2005, 38, 5180-5189.	2.2	75
101	Synthesis of well-defined block copolymers containing poly(N-isopropylacrylamide) segment by anionic block copolymerization of N-methoxymethyl-N-isopropylacrylamide. Designed Monomers and Polymers, 2004, 7, 11-24.	0.7	29
102	Synthesis of Poly(1,3-adamantane)s by Cationic Ring-Opening Polymerization of 1,3-Dehydroadamantanes. Macromolecules, 2004, 37, 7069-7071.	2.2	35
103	Anionic polymerization of 2-haloethyl methacrylates. Polymer, 2003, 44, 4157-4164.	1.8	12
104	Synthesis of new crosslinkable polymers by chemoselective polymerizations of 2-(1-aziridinyl)ethyl methacrylate. Journal of Polymer Science Part A, 2003, 41, 1335-1340.	2.5	14
105	Synthesis of Thermally Sensitive Water-Soluble Polymethacrylates by Living Anionic Polymerizations of Oligo(ethylene glycol) Methyl Ether Methacrylates. Macromolecules, 2003, 36, 8312-8319.	2.2	435
106	Anionic Polymerization of p-Pentamethyldisilyl-, p-Heptamethyltrisilyl-, and p-nonamethyltetrasilylstyrenes 1. Macromolecules, 2003, 36, 5081-5087.	2.2	5
107	Synthesis of Water-Soluble Polymethacrylates by Living Anionic Polymerization of Trialkylsilyl-Protected Oligo(ethylene glycol) Methacrylates. Macromolecules, 2003, 36, 42-49.	2.2	46
108	Anionic Polymerizations of 1-Adamantyl Methacrylate and 3-Methacryloyloxy-1,1′-biadamantane. Macromolecular Chemistry and Physics, 2002, 203, 2375-2384.	1.1	50

7

#	Article	IF	CITATIONS
109	Synthesis of well-defined poly(N-isopropylacrylamide) by the anionic polymerization of N-methoxymethyl-N-isopropylacrylamide. Journal of Polymer Science Part A, 2002, 40, 4328-4332.	2.5	35
110	Recent advance in living anionic polymerization of functionalized styrene derivatives. Progress in Polymer Science, 2002, 27, 1399-1471.	11.8	198
111	Controlled Anionic Polymerization of Methacrylonitrile with Diphenylmethylpotassium in the Presence of Triethylborane. Macromolecules, 2001, 34, 6551-6553.	2.2	12
112	Surface Molecular Motion of Monodisperse \hat{l}_{\pm} , \hat{l}_{\pm} %-Diamino-Terminated and \hat{l}_{\pm} , \hat{l}_{\pm} %-Dicarboxy-Terminated Polystyrenes. Macromolecules, 2001, 34, 8761-8767.	2.2	52
113	Synthesis of tetramers of 1,3-adamantane derivatives. Tetrahedron Letters, 2001, 42, 8645-8647.	0.7	34
114	Anionic polymerization of monomers containing functional groups, 14. Anionic polymerizations of aryl 4-vinylbenzoates. Macromolecular Chemistry and Physics, 2000, 201, 1077-1087.	1.1	14
115	Synthesis of highly isotactic poly(N,N-diethylacrylamide) by anionic polymerization with grignard reagents and diethylzinc. Journal of Polymer Science Part A, 2000, 38, 4677-4685.	2.5	44
116	Additive Effect of Triethylborane on Anionic Polymerization of N,N-Dimethylacrylamide and N,N-Diethylacrylamide. Macromolecules, 2000, 33, 4411-4416.	2.2	69
117	Synthesis of highly isotactic poly(N,N-diethylacrylamide) by anionic polymerization with grignard reagents and diethylzinc. Journal of Polymer Science Part A, 2000, 38, 4677-4685.	2.5	10
118	Anionic Polymerizations of Perfluoroalkyl Methacrylates and Synthesis of Well-Defined ABC Triblock Copolymers of Methacrylates Containing Hydrophilic, Hydrophobic, and Perfluoroalkyl Groups. Polymer Journal, 1999, 31, 983-988.	1.3	75
119	Stereospecific Anionic Polymerization of N, N-Dialkylacrylamides. Macromolecules, 1999, 32, 6466-6477.	2.2	99
120	Controlled Anionic Polymerization oftert-Butyl Acrylate with Diphenylmethylpotassium in the Presence of Triethylborane. Macromolecules, 1999, 32, 955-957.	2.2	27
121	Protection and Polymerization of Functional Monomers. 29. Syntheses of Well-Defined Poly[(4-vinylphenyl)acetic acid], Poly[3-(4-vinylphenyl)propionic acid], and Poly(3-vinylbenzoic acid) by Means of Anionic Living Polymerizations of Protected Monomers Bearing Bicyclic Ortho Ester Moieties. Macromolecules. 1999. 32. 1453-1462.	2.2	15
122	Anionic Polymerization of Monomers Containing Functional Groups. 12. Anionic Equilibrium Polymerization of 4-Cyano-α-methylstyrene. Macromolecules, 1998, 31, 2797-2803.	2.2	13
123	Anionic Polymerization of Monomers Containing Functional Groups. 13. Anionic Polymerizations of 2-, 3-, and 4-(3,3-Dimethyl-1-butynyl)styrenes, 2-, 3-, and 4-(1-Hexynyl)styrenes, and 4-(Phenylethynyl)styrene. Macromolecules, 1998, 31, 3764-3774.	2.2	46
124	Anionic polymerization of monomers containing functional groups, 11. Anionic polymerizations of alkynyl methacrylates. Macromolecular Chemistry and Physics, 1998, 199, 1827-1834.	1.1	28
125	Radical polymerization of (phenylethynyl)styrenes and characterization of poly(phenylethynyl)styrenes as a thermally curable material. Polymer Bulletin, 1998, 40, 651-658.	1.7	13
126	Effect of Chain End Chemistry on Surface Molecular Motion of Polystyrene Films. Macromolecules, 1998, 31, 5148-5149.	2.2	48

#	Article	IF	CITATIONS
127	Controlled Anionic Polymerization oftert-Butyl Acrylate with Diphenylmethyl Anions in the Presence of Dialkylzinc. Macromolecules, 1998, 31, 8706-8712.	2.2	67
128	Protection and Polymerization of Functional Monomers. 27. Synthesis of Well-Defined Poly(4-vinyl-α-methylcinnamic Acid) by Means of Anionic Living Polymerization of 2-[1-Methyl-2-(4-ethenylphenyl)ethenyl]-4,4-dimethyl-2-oxazoline. Macromolecules, 1998, 31, 5598-5608.	2.2	8
129	Precision Polymerization and Polymers II. Living Anionic Polymerization of Styrenes Substituted with Electron-Withdrawing Groups Kobunshi Ronbunshu, 1997, 54, 829-842.	0.2	3
130	Anionic Polymerization of Monomers Containing Functional Groups. 9. Anionic Polymerizations of 4-Vinylphenyl Methyl Sulfide, 4-Vinylbenzyl Methyl Sulfide, and 2-(4â€⁻-Vinylphenyl)ethyl Methyl Sulfide. Macromolecules, 1997, 30, 3728-3731.	2.2	14
131	Anionic Polymerization of Monomers Containing Functional Groups. 8. Anionic Living Polymerization of 4-Cyano-α-methylstyrene. Macromolecules, 1997, 30, 757-763.	2.2	12
132	Anionic Polymerization of Monomers Containing Functional Groups. 10. Anionic Polymerizations of N-Aryl-N-(4-vinylbenzylidene) amines 1. Macromolecules, 1997, 30, 6458-6466.	2.2	28
133	Radical polymerization of (trimethylsilylethynyl)styrene and thermal properties of polystyrene with ethynyl group. Polymer Bulletin, 1997, 39, 173-178.	1.7	8
134	Anionic Polymerizations of 2-Vinylbenzoxazole and 2-Isopropenylbenzoxazole. Macromolecules, 1996, 29, 528-534.	2.2	9
135	Protection and polymerization of functional monomers, 26. Synthesis of well-defined poly[4-(3′-butynyl)styrene] by means of anionic polymerization of 4-(4′-trimethylsilyl-3′-butynyl)styrene. Macromolecular Chemistry and Physics, 1996, 197, 1781-1791.	1.1	6
136	Protection and Polymerization of Functional Monomers. 25. Synthesis of Well-Defined Polystyrene Bearing a Triol Functionality by Means of Anionic Living Polymerization of 4-[(4-(4-Vinylphenyl)butoxy)methyl]-1-methyl-2,6,7- trioxabicyclo[2.2.2]octane. Macromolecules, 1995, 28, 4829-4836.	2.2	17
137	Protection and Polymerization of Functional Monomers. 24. Anionic Living Polymerizations of 5-Vinyland 4-Vinyl-1,3-benzodioxoles. Macromolecules, 1995, 28, 3787-3793.	2.2	17
138	Protection and polymerization of functional monomers, 22. Synthesis of well-defined poly(4-vinylbenzoic acid) by means of anionic living polymerization of N-(4-vinylbenzoyl)-N′-methylpiperazine, followed by deprotection. Macromolecular Chemistry and Physics, 1994, 195, 3173-3187.	1.1	18
139	Synthesis of Polystyrene Having an Aminoxy Terminal by the Reactions of Living Polystyrene with an Oxoaminium Salt and with the Corresponding Nitroxyl Radical. Macromolecules, 1994, 27, 3119-3124.	2.2	70
140	Convenient Synthesis of Bis-1,3-dithiolium Salts by One-electron Oxidation of Tetrathiafulvalene with Oxoaminium Salts. Chemistry Letters, 1994, 23, 1827-1828.	0.7	20
141	Anionic polymerization of monomers containing functional groups. 5. Anionic polymerizations of 2-, 3-, and 4-cyanostyrene. Macromolecules, 1993, 26, 3009-3018.	2.2	41
142	Anionic polymerization of monomers containing functional groups. 7. Anionic polymerizations of N-alkyl-N-(4-vinylbenzylidene)amines. Macromolecules, 1993, 26, 6976-6984.	2.2	28
143	Anionic polymerization of monomers containing functional groups. 6. Anionic block copolymerization of styrene derivatives para-substituted with electron-withdrawing groups. Macromolecules, 1993, 26, 6964-6975.	2.2	63
144	Synthesis of polymers with carboxy end groups by reaction of polystyryl anions with 4-bromo-1,1,1-trimethoxybutane. Macromolecules, 1993, 26, 2145-2150.	2.2	45

#	Article	IF	CITATION
145	Protection and polymerization of functional monomers. 19. Synthesis of well-defined poly(ethynylstyrenes) by means of anionic living polymerization of (trimethylsilyl)ethynylstyrenes. Macromolecules, 1993, 26, 6985-6991.	2.2	40
146	Anionic living polymerization of styrenes containing electron-withdrawing groups. Makromolekulare Chemie Macromolecular Symposia, 1993, 67, 223-236.	0.6	14
147	Anionic polymerization of monomers containing functional groups. 4. Anionic living polymerization of N,N-dialkyl-4-vinylbenzenesulfonamides. Macromolecules, 1992, 25, 4840-4847.	2.2	38
148	Protection and polymerization of functional monomers. 16. Anionic living polymerization of 4-[(trimethylsilyl)ethynyl]styrene. Macromolecules, 1991, 24, 5230-5231.	2.2	26
149	Protection and polymerization of functional monomers. 15. Anionic living polymerizations of 2-(3-vinylphenyl)-1,3-dioxolane and related monomers. Macromolecules, 1991, 24, 1449-1454.	2.2	29
150	Anionic polymerization of monomers containing functional groups. 2. Anionic living polymerization of 4-cyanostyrene. Macromolecules, 1991, 24, 625-626.	2.2	33
151	Anionic polymerization of monomers containing functional groups. 3. Anionic living polymerization of N,N dialkyl-4-vinylbenzamides. Macromolecules, 1991, 24, 5015-5022.	2.2	31
152	Protection and polymerization of functional monomers. 13. Anionic living polymerization of tert-butyl 4-vinylbenzoate. Macromolecules, 1989, 22, 2895-2901.	2.2	59
153	CHAPTER 2. Precise Synthesis of Multi-Component Miktoarm Star Polymers by a New Conceptual Iterative Methodology Using Living Anionic Polymerization. RSC Polymer Chemistry Series, 0, , 31-55.	0.1	0