Tak Pan Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1730419/publications.pdf

Version: 2024-02-01

60 papers 6,568 citations

32 h-index 58 g-index

62 all docs

62 docs citations

62 times ranked 8648 citing authors

#	Article	IF	CITATIONS
1	Altered excitatory and decreased inhibitory transmission in the prefrontal cortex of male mice with early developmental disruption to the ventral hippocampus. Cerebral Cortex, 2022, , .	2.9	O
2	The hippocampus in stress susceptibility and resilience: Reviewing molecular and functional markers. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2022, 119, 110601.	4.8	10
3	Neurodevelopmental insights into circuit dysconnectivity in schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 104, 110047.	4.8	11
4	Opposing Changes in Synaptic and Extrasynaptic N-Methyl-D-Aspartate Receptor Function in Response to Acute and Chronic Restraint Stress. Frontiers in Molecular Neuroscience, 2021, 14, 716675.	2.9	5
5	It Is All in the Right Amygdala: Increased Synaptic Plasticity and Perineuronal Nets in Male, But Not Female, Juvenile Rat Pups after Exposure to Early-Life Stress. Journal of Neuroscience, 2020, 40, 8276-8291.	3. 6	45
6	Negative Memory Engrams in the Hippocampus Enhance the Susceptibility to Chronic Social Defeat Stress. Journal of Neuroscience, 2019, 39, 7576-7590.	3.6	32
7	p97 regulates GluA1 homomeric AMPA receptor formation and plasma membrane expression. Nature Communications, 2019, 10, 4089.	12.8	13
8	Heterochromatic genome instability and neurodegeneration sharing similarities with Alzheimer's disease in old Bmi1+/Ⱐmice. Scientific Reports, 2019, 9, 594.	3.3	22
9	The susceptibility to chronic social defeat stress is related to low hippocampal extrasynaptic NMDA receptor function. Neuropsychopharmacology, 2019, 44, 1310-1318.	5.4	27
10	Pharmacological interrogation of TrkA-mediated mechanisms in hippocampal-dependent memory consolidation. PLoS ONE, 2019, 14, e0218036.	2. 5	7
11	Preventing synaptic deficits in Alzheimer's disease by inhibiting tumor necrosis factor alpha signaling. IBRO Reports, 2018, 4, 18-21.	0.3	18
12	Morphological and functional changes in the preweaning basolateral amygdala induced by early chronic stress associate with anxiety and fear behavior in adult male, but not female rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 25-37.	4.8	70
13	Generalization of Conditioned Auditory Fear is Regulated by Maternal Effects on Ventral Hippocampal Synaptic Plasticity. Neuropsychopharmacology, 2018, 43, 1297-1307.	5.4	7
14	Prenatal immune activation potentiates endocannabinoid-related plasticity of inhibitory synapses in the hippocampus of adolescent rat offspring. European Neuropsychopharmacology, 2018, 28, 1405-1417.	0.7	5
15	Antidepressive effects of targeting ELK-1 signal transduction. Nature Medicine, 2018, 24, 591-597.	30.7	33
16	A Rapid Pipeline to Model Rare Neurodevelopmental Disorders with Simultaneous CRISPR/Cas9 Gene Editing. Stem Cells Translational Medicine, 2017, 6, 886-896.	3. 3	19
17	Brain region- and sex-specific alterations in mitochondrial function and NF-κB signaling in the TgCRND8 mouse model of Alzheimer's disease. Neuroscience, 2017, 361, 81-92.	2.3	16
18	Primary Blast-Induced Changes in Akt and GSK3 \hat{l}^2 Phosphorylation in Rat Hippocampus. Frontiers in Neurology, 2017, 8, 413.	2.4	15

#	Article	IF	CITATIONS
19	Early Development of Parvalbumin-, Somatostatin-, and Cholecystokinin-Expressing Neurons in Rat Brain following Prenatal Immune Activation and Maternal Iron Deficiency. Developmental Neuroscience, 2016, 38, 342-353.	2.0	17
20	Inhibiting tumor necrosis factor-α before amyloidosis prevents synaptic deficits in an Alzheimer's disease model. Neurobiology of Aging, 2016, 47, 41-49.	3.1	57
21	Loss of dysbindin-1, a risk gene for schizophrenia, leads to impaired group 1 metabotropic glutamate receptor function in mice. Frontiers in Behavioral Neuroscience, 2015, 9, 72.	2.0	24
22	Early Growth Response 1 (Egr-1) Regulates N-Methyl-d-aspartate Receptor (NMDAR)-dependent Transcription of PSD-95 and α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid Receptor (AMPAR) Trafficking in Hippocampal Primary Neurons. Journal of Biological Chemistry, 2015, 290, 29603-29616.	3.4	36
23	Maternal Care Differentially Affects Neuronal Excitability and Synaptic Plasticity in the Dorsal and Ventral Hippocampus. Neuropsychopharmacology, 2015, 40, 1590-1599.	5.4	36
24	Presynaptic D2 Dopamine Receptors Control Long-Term Depression Expression and Memory Processes in the Temporal Hippocampus. Biological Psychiatry, 2015, 77, 513-525.	1.3	84
25	A longitudinal study of stressâ€induced hippocampal volume changes in mice that are susceptible or resilient to chronic social defeat. Hippocampus, 2014, 24, 1120-1128.	1.9	58
26	Impaired Adrenergic-Mediated Plasticity of Prefrontal Cortical Glutamate Synapses in Rats with Developmental Disruption of the Ventral Hippocampus. Neuropsychopharmacology, 2014, 39, 2963-2973.	5.4	16
27	Knockdown of Prodynorphin Gene Prevents Cognitive Decline, Reduces Anxiety, and Rescues Loss of Group 1 Metabotropic Glutamate Receptor Function in Aging. Journal of Neuroscience, 2013, 33, 12792-12804.	3.6	26
28	Simultaneous Monitoring of Presynaptic Transmitter Release and Postsynaptic Receptor Trafficking Reveals an Enhancement of Presynaptic Activity in Metabotropic Glutamate Receptor-Mediated Long-Term Depression. Journal of Neuroscience, 2013, 33, 5867-5877.	3.6	18
29	Prenatal immune activation interacts with stress and corticosterone exposure later in life to modulate N-methyl-d-aspartate receptor synaptic function and plasticity. International Journal of Neuropsychopharmacology, 2013, 16, 1835-1848.	2.1	24
30	Opposing Alterations in Excitation and Inhibition of Layer 5 Medial Prefrontal Cortex Pyramidal Neurons Following Neonatal Ventral Hippocampal Lesion. Cerebral Cortex, 2013, 23, 1198-1207.	2.9	20
31	dcc orchestrates the development of the prefrontal cortex during adolescence and is altered in psychiatric patients. Translational Psychiatry, 2013, 3, e338-e338.	4.8	83
32	Variations in postnatal maternal care and the epigenetic regulation of metabotropic glutamate receptor 1 expression and hippocampal function in the rat. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17200-17207.	7.1	130
33	Maternal Care Influences Hippocampal N-Methyl-D-Aspartate Receptor Function and Dynamic Regulation by Corticosterone in Adulthood. Biological Psychiatry, 2012, 72, 491-498.	1.3	58
34	Dynamic regulation of NMDAR function in the adult brain by the stress hormone corticosterone. Frontiers in Cellular Neuroscience, 2012, 6, 9.	3.7	24
35	Developmental Hippocampal Neuroplasticity in a Model of Nicotine Replacement Therapy during Pregnancy and Breastfeeding. PLoS ONE, 2012, 7, e37219.	2.5	18
36	Ligand-Dependent TrkA Activity in Brain Differentially Affects Spatial Learning and Long-Term Memory. Molecular Pharmacology, 2011, 80, 498-508.	2.3	41

#	Article	IF	CITATIONS
37	Astrocytes Control Glutamate Receptor Levels at Developing Synapses through SPARC–β-Integrin Interactions. Journal of Neuroscience, 2011, 31, 4154-4165.	3 . 6	112
38	Modulation of Synaptic Plasticity by Stress Hormone Associates with Plastic Alteration of Synaptic NMDA Receptor in the Adult Hippocampus. PLoS ONE, 2011, 6, e27215.	2.5	46
39	Hippocampal long-term depression is required for the consolidation of spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16697-16702.	7.1	244
40	Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11471-11476.	7.1	205
41	NMDA Receptor Function and NMDA Receptor-Dependent Phosphorylation of Huntingtin Is Altered by the Endocytic Protein HIP1. Journal of Neuroscience, 2007, 27, 2298-2308.	3.6	41
42	Calpain-Mediated mGluR1î± Truncation: A Key Step in Excitotoxicity. Neuron, 2007, 53, 399-412.	8.1	155
43	LTP Inhibits LTD in the Hippocampus via Regulation of GSK3 \hat{I}^2 . Neuron, 2007, 53, 703-717.	8.1	632
44	NMDA Receptor Subunits Have Differential Roles in Mediating Excitotoxic Neuronal Death Both <i>In Vitro</i> In VivoIn V	3.6	674
45	Imbalance towards inhibition as a substrate of aging-associated cognitive impairment. Neuroscience Letters, 2006, 397, 64-68.	2.1	35
46	A Critical Role for Myosin IIB in Dendritic Spine Morphology and Synaptic Function. Neuron, 2006, 49, 175-182.	8.1	158
47	Involvement of Myosin Vb in Glutamate Receptor Trafficking. Journal of Biological Chemistry, 2006, 281, 3669-3678.	3.4	113
48	Interference Peptides: A Novel Therapeutic Approach Targeting Synaptic Plasticity in Drug Addiction., 2006,, 473-484.		3
49	Nucleus Accumbens Long-Term Depression and the Expression of Behavioral Sensitization. Science, 2005, 310, 1340-1343.	12.6	261
50	Neuroligins Mediate Excitatory and Inhibitory Synapse Formation. Journal of Biological Chemistry, 2005, 280, 17312-17319.	3.4	242
51	A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13915-13920.	7.1	323
52	Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO Journal, 2004, 23, 1040-1050.	7.8	267
53	Role of NMDA Receptor Subtypes in Governing the Direction of Hippocampal Synaptic Plasticity. Science, 2004, 304, 1021-1024.	12.6	975
54	Changes in retinal expression of neurotrophins and neurotrophin receptors induced by ocular hypertension. Journal of Neurobiology, 2004, 58, 341-354.	3.6	105

#	Article	IF	CITATION
55	The impact of $A\hat{l}^2$ -plaques on cortical cholinergic and non-cholinergic presynaptic boutons in alzheimer's disease-like transgenic mice. Neuroscience, 2003, 121, 421-432.	2.3	91
56	Activation of PI3-Kinase Is Required for AMPA Receptor Insertion during LTP of mEPSCs in Cultured Hippocampal Neurons. Neuron, 2003, 38, 611-624.	8.1	317
57	Cholinergic nerve terminals establish classical synapses in the rat cerebral cortex: synaptic pattern and age-related atrophy. Neuroscience, 2001, 105, 277-285.	2.3	130
58	Loss of Presynaptic and Postsynaptic Structures Is Accompanied by Compensatory Increase in Action Potential-Dependent Synaptic Input to Layer V Neocortical Pyramidal Neurons in Aged Rats. Journal of Neuroscience, 2000, 20, 8596-8606.	3.6	70
59	Reorganization of Cholinergic Terminals in the Cerebral Cortex and Hippocampus in Transgenic Mice Carrying Mutated Presenilin-1 and Amyloid Precursor Protein Transgenes. Journal of Neuroscience, 1999, 19, 2706-2716.	3.6	193
60	Synaptic numbers across cortical laminae and cognitive performance of the rat during ageing. Neuroscience, 1998, 84, 403-412.	2.3	51