
Daniel F Legler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1729917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Delineating the interactions between the cannabinoid CB ₂ receptor and its regulatory effectors; l²â€arrestins and GPCR kinases. British Journal of Pharmacology, 2022, 179, 2223-2239.	2.7	8
2	Mechanosensitive ACKR4 scavenges CCR7 chemokines to facilitate TÂcell de-adhesion and passive transport by flow in inflamed afferent lymphatics. Cell Reports, 2022, 38, 110334.	2.9	10
3	Shifting CCR7 towards Its Monomeric Form Augments CCL19 Binding and Uptake. Cells, 2022, 11, 1444.	1.8	5
4	CD44 engagement enhances acute myeloid leukemia cell adhesion to the bone marrow microenvironment by increasing VLA-4 avidity. Haematologica, 2021, 106, 2102-2113.	1.7	22
5	Keratinocytes control skin immune homeostasis through de novo–synthesized glucocorticoids. Science Advances, 2021, 7, .	4.7	24
6	A Versatile Toolkit for Semi-Automated Production of Fluorescent Chemokines to Study CCR7 Expression and Functions. International Journal of Molecular Sciences, 2021, 22, 4158.	1.8	12
7	The dimeric form of CXCL12 binds to atypical chemokine receptor 1. Science Signaling, 2021, 14, .	1.6	19
8	CCR7 signalosomes are preassembled on tips of lymphocyte microvilli in proximity to LFA-1. Biophysical Journal, 2021, 120, 4002-4012.	0.2	6
9	CAL-1 as Cellular Model System to Study CCR7-Guided Human Dendritic Cell Migration. Frontiers in Immunology, 2021, 12, 702453.	2.2	3
10	Medullary stromal cells synergize their production and capture of CCL21 for T-cell emigration from neonatal mouse thymus. Blood Advances, 2021, 5, 99-112.	2.5	12
11	Elimination of negative feedback in TLR signalling allows rapid and hypersensitive detection of microbial contaminants. Scientific Reports, 2021, 11, 24414.	1.6	1
12	β-Arrestin1 and β-Arrestin2 Are Required to Support the Activity of the CXCL12/HMGB1 Heterocomplex on CXCR4. Frontiers in Immunology, 2020, 11, 550824.	2.2	13
13	B cell zone reticular cell microenvironments shape CXCL13 gradient formation. Nature Communications, 2020, 11, 3677.	5.8	52
14	<scp>CCR</scp> 5 deficiency/ <scp>CCR</scp> 5Δ32: resistant to <scp>HIV</scp> infection at the cost of curtailed <scp>CD</scp> 4 ⁺ T cell memory responses. EMBO Journal, 2020, 39, e105854.	3.5	4
15	CXCL14 Preferentially Synergizes With Homeostatic Chemokine Receptor Systems. Frontiers in Immunology, 2020, 11, 561404.	2.2	20
16	ACKR4 Recruits GRK3 Prior to β-Arrestins but Can Scavenge Chemokines in the Absence of β-Arrestins. Frontiers in Immunology, 2020, 11, 720.	2.2	37
17	Membrane Compartmentalization and Scaffold Proteins in Leukocyte Migration. Frontiers in Cell and Developmental Biology, 2020, 8, 285.	1.8	3
18	FAT10 localizes in dendritic cell aggresome-like induced structures and contributes to their disassembly. Journal of Cell Science, 2020, 133, .	1.2	2

#	Article	IF	CITATIONS
19	CCL20 is a novel ligand for the scavenging atypical chemokine receptor 4. Journal of Leukocyte Biology, 2020, 107, 1137-1154.	1.5	24
20	Chemokine Receptor CCR7 Triggers an Endomembrane Signaling Complex for Spatial Rac Activation. Cell Reports, 2019, 29, 995-1009.e6.	2.9	23
21	In Vivo Function of the Lipid Raft Protein Flotillin-1 during CD8+ T Cell–Mediated Host Surveillance. Journal of Immunology, 2019, 203, 2377-2387.	0.4	14
22	Biased Signaling of CCL21 and CCL19 Does Not Rely on N-Terminal Differences, but Markedly on the Chemokine Core Domains and Extracellular Loop 2 of CCR7. Frontiers in Immunology, 2019, 10, 2156.	2.2	18
23	Engineering of Nanobodies Recognizing the Human Chemokine Receptor CCR7. International Journal of Molecular Sciences, 2019, 20, 2597.	1.8	10
24	IL-4 receptor engagement in human neutrophils impairs their migration and extracellular trap formation. Journal of Allergy and Clinical Immunology, 2019, 144, 267-279.e4.	1.5	65
25	Beyond migration-Chemokines in lymphocyte priming, differentiation, and modulating effector functions. Journal of Leukocyte Biology, 2018, 104, 301-312.	1.5	28
26	Membrane lipid environment: Potential modulation of chemokine receptor function. Cytokine, 2018, 109, 72-75.	1.4	8
27	A unique signal sequence of the chemokine receptor CCR7 promotes package into COPII vesicles for efficient receptor trafficking. Journal of Leukocyte Biology, 2018, 104, 375-389.	1.5	8
28	A structure–activity relationship linking non-planar PCBs to functional deficits of neural crest cells: new roles for connexins. Archives of Toxicology, 2018, 92, 1225-1247.	1.9	15
29	Role of Mechanotransduction and Tension in T Cell Function. Frontiers in Immunology, 2018, 9, 2638.	2.2	205
30	Fluorescently Tagged CCL19 and CCL21 to Monitor CCR7 and ACKR4 Functions. International Journal of Molecular Sciences, 2018, 19, 3876.	1.8	22
31	CCL19 with CCL21-tail displays enhanced glycosaminoglycan binding with retained chemotactic potency in dendritic cells. Journal of Leukocyte Biology, 2018, 104, 401-411.	1.5	20
32	ZAP70 expression enhances chemokineâ€driven chronic lymphocytic leukemia cell migration and arrest by valency regulation of integrins. FASEB Journal, 2018, 32, 4824-4835.	0.2	21
33	CCR7 Is Recruited to the Immunological Synapse, Acts as Co-stimulatory Molecule and Drives LFA-1 Clustering for Efficient T Cell Adhesion Through ZAP70. Frontiers in Immunology, 2018, 9, 3115.	2.2	25
34	New insights in chemokine signaling. F1000Research, 2018, 7, 95.	0.8	68
35	Modulation of Chemokine Receptor Function by Cholesterol: New Prospects for Pharmacological Intervention. Molecular Pharmacology, 2017, 91, 331-338.	1.0	36
36	Epithelial chemokine CXCL14 synergizes with CXCL12 <i>via</i> allosteric modulation of CXCR4. FASEB Journal, 2017, 31, 3084-3097.	0.2	58

#	Article	IF	CITATIONS
37	Chemokines: Chemistry, Biochemistry and Biological Function. Chimia, 2016, 70, 856.	0.3	63
38	The STEAP1 _{262–270} peptide encapsulated into PLGA microspheres elicits strong cytotoxic T cell immunity in HLAâ€A*0201 transgenic mice—A new approach to immunotherapy against prostate carcinoma. Prostate, 2016, 76, 456-468.	1.2	15
39	Inflammation-Induced CCR7 Oligomers Form Scaffolds to Integrate Distinct Signaling Pathways for Efficient Cell Migration. Immunity, 2016, 44, 59-72.	6.6	85
40	Distinct CCR7 glycosylation pattern shapes receptor signaling and endocytosis to modulate chemotactic responses. Journal of Leukocyte Biology, 2016, 99, 993-1007.	1.5	68
41	Chemokine axes in breast cancer: factors of the tumor microenvironment reshape the CCR7-driven metastatic spread of luminal-A breast tumors. Journal of Leukocyte Biology, 2016, 99, 1009-1025.	1.5	30
42	Common and biased signaling pathways of the chemokine receptor CCR7 elicited by its ligands CCL19 and CCL21 in leukocytes. Journal of Leukocyte Biology, 2016, 99, 869-882.	1.5	140
43	Regulation of Sec16 levels and dynamics links proliferation and secretion. Journal of Cell Science, 2015, 128, 670-82.	1.2	39
44	In vivo TCR Signaling in CD4+ T Cells Imprints a Cell-Intrinsic, Transient Low-Motility Pattern Independent of Chemokine Receptor Expression Levels, or Microtubular Network, Integrin, and Protein Kinase C Activity. Frontiers in Immunology, 2015, 6, 297.	2.2	14
45	Loss of Gadkin Affects Dendritic Cell Migration In Vitro. PLoS ONE, 2015, 10, e0143883.	1.1	12
46	On the move: endocytic trafficking in cell migration. Cellular and Molecular Life Sciences, 2015, 72, 2119-2134.	2.4	84
47	Analysis of CCR7 mediated T cell transfectant migration using a microfluidic gradient generator. Journal of Immunological Methods, 2015, 419, 9-17.	0.6	6
48	Loss of GM130 in breast cancer cells and its effects on cell migration, invasion and polarity. Cell Cycle, 2015, 14, 1139-1147.	1.3	25
49	CCR7: Roles in cancer cell dissemination, migration and metastasis formation. International Journal of Biochemistry and Cell Biology, 2014, 54, 78-82.	1.2	66
50	Interstitial Dendritic Cell Guidance by Haptotactic Chemokine Gradients. Science, 2013, 339, 328-332.	6.0	474
51	Ubiquitylation of the chemokine receptor CCR7 enables efficient receptor recycling and cell migration. Journal of Cell Science, 2012, 125, 4463-74.	1.2	41
52	Distinct modulation of chemokine expression patterns in human monocyte-derived dendritic cells by prostaglandin E2. Cellular Immunology, 2012, 276, 52-58.	1.4	17
53	Converse regulation of <scp>CCR</scp> 7â€driven human dendritic cell migration by prostaglandin <scp>E</scp> ₂ and liver <scp>X</scp> receptor activation. European Journal of Immunology, 2012, 42, 2949-2958.	1.6	28
54	Cross-Talk Between TCR and CCR7 Signaling Sets a Temporal Threshold for Enhanced T Lymphocyte Migration. Journal of Immunology, 2011, 187, 5645-5652.	0.4	36

#	Article	IF	CITATIONS
55	Immobilized Chemokine Fields and Soluble Chemokine Gradients Cooperatively Shape Migration Patterns of Dendritic Cells. Immunity, 2010, 32, 703-713.	6.6	282
56	Definition of Key Variables for the Induction of Optimal NY-ESO-1–Specific T Cells in HLA Transgene Mice. Journal of Immunology, 2010, 185, 3445-3455.	0.4	8
57	Prostaglandin E2 at new glance: Novel insights in functional diversity offer therapeutic chances. International Journal of Biochemistry and Cell Biology, 2010, 42, 198-201.	1.2	198
58	Soluble CD146 is generated by ectodomain shedding of membrane CD146 in a calcium-induced, matrix metalloprotease-dependent process. Microvascular Research, 2009, 78, 325-331.	1.1	39
59	Prostaglandin E2 enhances T-cell proliferation by inducing the costimulatory molecules OX40L, CD70, and 4-1BBL on dendritic cells. Blood, 2009, 113, 2451-2460.	0.6	93
60	V domain of RAGE interacts with AGEs on prostate carcinoma cells. Prostate, 2008, 68, 748-758.	1.2	45
61	Increased Mobility of Major Histocompatibility Complex I-Peptide Complexes Decreases the Sensitivity of Antigen Recognition. Journal of Biological Chemistry, 2008, 283, 24254-24263.	1.6	21
62	Reduced Expression of Cyclooxygenase-2 in Primary Breast Cancer. Journal of the National Cancer Institute, 2008, 100, 1042-1043.	3.0	6
63	Distinct motifs in the chemokine receptor CCR7 regulate signal transduction, receptor trafficking and chemotaxis. Journal of Cell Science, 2008, 121, 2759-2767.	1.2	45
64	Prostaglandin E2 is a key factor for monocyte-derived dendritic cell maturation: enhanced T cell stimulatory capacity despite IDO. Journal of Leukocyte Biology, 2007, 82, 1106-1114.	1.5	60
65	A novel cytosolic class I antigenâ€processing pathway for endoplasmicâ€reticulumâ€targeted proteins. EMBO Reports, 2007, 8, 945-951.	2.0	13
66	Posttranscriptional regulation of Fas (CD95) ligand killing activity by lipid rafts. Blood, 2006, 107, 2790-2796.	0.6	32
67	Preformed reggie/flotillin caps: stable priming platforms for macrodomain assembly in T cells. FASEB Journal, 2006, 20, 711-713.	0.2	52
68	Opposite Fate of Endocytosed CCR7 and Its Ligands: Recycling versus Degradation. Journal of Immunology, 2006, 177, 2314-2323.	0.4	117
69	Prostaglandin E2 Is Generally Required for Human Dendritic Cell Migration and Exerts Its Effect via EP2 and EP4 Receptors. Journal of Immunology, 2006, 176, 966-973.	0.4	188
70	Differential insertion of GPlâ€anchored GFPs into lipid rafts of live cells. FASEB Journal, 2005, 19, 73-75.	0.2	114
71	PrP c capping in T cells promotes its association with the lipid raft proteins reggieâ€1 and reggieâ€2 and leads to signal transduction. FASEB Journal, 2004, 18, 1731-1733.	0.2	130
72	Theα vβ 3 integrin as a tumor homing ligand for lymphocytes. European Journal of Immunology, 2004, 3 1608-1616.	34 1.6	28

#	Article	IF	CITATIONS
73	CCL19/CCL21-triggered signal transduction and migration of dendritic cells requires prostaglandin E2. Blood, 2004, 103, 1595-1601.	0.6	219
74	Soluble Major Histocompatibility Complex-Peptide Octamers with Impaired CD8 Binding Selectively Induce Fas-dependent Apoptosis. Journal of Biological Chemistry, 2003, 278, 4500-4509.	1.6	43
75	Recruitment of TNF Receptor 1 to Lipid Rafts Is Essential for TNFα-Mediated NF-κB Activation. Immunity, 2003, 18, 655-664.	6.6	417
76	The β1 and β3 Integrins Promote T Cell Receptor-mediated Cytotoxic T Lymphocyte Activation. Journal of Biological Chemistry, 2003, 278, 26983-26991.	1.6	59
77	Association of the Epstein-Barr virus latent membrane protein 1 with lipid rafts is mediated through its N-terminal region. Cellular and Molecular Life Sciences, 2002, 59, 171-180.	2.4	23
78	CARMA1 is a critical lipid raft–associated regulator of TCR-induced NF-κB activation. Nature Immunology, 2002, 3, 836-843.	7.0	322
79	Changing responsiveness to chemokines allows medullary plasmablasts to leave lymph nodes. European Journal of Immunology, 2001, 31, 609-616.	1.6	107
80	CTL activation is induced by cross-linking of TCR/MHC-peptide-CD8/p56lck adducts in rafts. European Journal of Immunology, 2001, 31, 1561-1570.	1.6	38
81	Selective inhibition of CTL activation by a dipalmitoylâ€phospholipid that prevents the recruitment of signaling molecules to lipid rafts. FASEB Journal, 2001, 15, 1601-1603.	0.2	25
82	Activation-dependent modulation of B lymphocyte migration to chemokines. International Immunology, 2000, 12, 1285-1292.	1.8	81
83	The chemokine SLC is expressed in T cell areas of lymph nodes and mucosal lymphoid tissues and attracts activated T cells via CCR7. European Journal of Immunology, 1998, 28, 2025-2034.	1.6	326
84	B Cell–attracting Chemokine 1, a Human CXC Chemokine Expressed in Lymphoid Tissues, Selectively Attracts B Lymphocytes via BLR1/CXCR5. Journal of Experimental Medicine, 1998, 187, 655-660.	4.2	733
85	Identification of CCR8, the Receptor for the Human CC Chemokine I-309. Journal of Biological Chemistry, 1997, 272, 17251-17254.	1.6	167
86	Expression of high- and low-affinity receptors for C3a on the human mast cell line, HMC-1. European Journal of Immunology, 1996, 26, 753-758.	1.6	76
87	The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature, 1996, 382, 833-835.	13.7	1,662
88	Distinct Fates of Chemokine and Surrogate Molecule Gradients: Consequences for CCR7-Guided Dendritic Cell Migration. Frontiers in Immunology, 0, 13, .	2.2	4