Salam Al-Karadaghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1728752/publications.pdf Version: 2024-02-01

SALAM AL-KARADACHI

#	Article	IF	CITATIONS
1	Occurrence, conformational features and amino acid propensities for the π-helix. Protein Engineering, Design and Selection, 2002, 15, 353-358.	2.1	227
2	Crystal Structure of Thermotoga maritima Ribosome Recycling Factor: A tRNA Mimic. Science, 1999, 286, 2349-2352.	12.6	184
3	Crystal structure of ferrochelatase: the terminal enzyme in heme biosynthesis. Structure, 1997, 5, 1501-1510.	3.3	180
4	Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. Journal of Molecular Biology, 2001, 311, 111-122.	4.2	175
5	The S/T-Rich Motif in the DNAJB6 Chaperone Delays Polyglutamine Aggregation and the Onset of Disease in a Mouse Model. Molecular Cell, 2016, 62, 272-283.	9.7	140
6	The structure of elongation factor G in complex with GDP: conformational flexibility and nucleotide exchange. Structure, 1996, 4, 555-565.	3.3	137
7	Structural and mechanistic basis of porphyrin metallation by ferrochelatase. Journal of Molecular Biology, 2000, 297, 221-232.	4.2	122
8	Structural Basis for Interactions between Tenascins and Lectican C-Type Lectin Domains. Structure, 2004, 12, 1495-1506.	3.3	113
9	Chelatases: distort to select?. Trends in Biochemical Sciences, 2006, 31, 135-142.	7.5	94
10	Iron superoxide dismutase from the archaeon Sulfolobus solfataricus: analysis of structure and thermostability. Journal of Molecular Biology, 1999, 286, 189-205.	4.2	86
11	The Structures of Frataxin Oligomers Reveal the Mechanism for the Delivery and Detoxification of Iron. Structure, 2006, 14, 1535-1546.	3.3	78
12	ATP-Induced Conformational Dynamics in the AAA+ Motor Unit of Magnesium Chelatase. Structure, 2010, 18, 354-365.	3.3	70
13	The Structures of Human Dihydroorotate Dehydrogenase with and without Inhibitor Reveal Conformational Flexibility in the Inhibitor and Substrate Binding Sites. Biochemistry, 2008, 47, 8929-8936.	2.5	69
14	Porphyrin Binding and Distortion and Substrate Specificity in the Ferrochelatase Reaction: The Role of Active Site Residues. Journal of Molecular Biology, 2008, 378, 1074-1083.	4.2	62
15	Metal Binding to Saccharomyces cerevisiae Ferrochelatase. Biochemistry, 2002, 41, 13499-13506.	2.5	61
16	Amino Acid Residues His183 and Glu264 inBacillus subtilisFerrochelatase Direct and Facilitate the Insertion of Metal Ion into Protoporphyrin IXâ€,â€j. Biochemistry, 2007, 46, 87-94.	2.5	60
17	Targeting Myeloid Differentiation Using Potent 2-Hydroxypyrazolo[1,5- <i>a</i>]pyridine Scaffold-Based Human Dihydroorotate Dehydrogenase Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 6034-6055. 	6.4	57
18	Refined crystal structure of liver alcohol dehydrogenase–NADH complex at 1.8 à resolution. Acta Crystallographica Section D: Biological Crystallography, 1994, 50, 793-807.	2.5	54

#	Article	IF	CITATIONS
19	Crystal Structure of Plasmodium falciparum Spermidine Synthase in Complex with the Substrate Decarboxylated S-adenosylmethionine and the Potent Inhibitors 4MCHA and AdoDATO. Journal of Molecular Biology, 2007, 373, 167-177.	4.2	53
20	Recessiveness and Dominance in Barley Mutants Deficient in Mg-Chelatase Subunit D, an AAA Protein Involved in Chlorophyll Biosynthesis. Plant Cell, 2007, 18, 3606-3616.	6.6	49
21	Substrate-binding Model of the Chlorophyll Biosynthetic Magnesium Chelatase BchH Subunit. Journal of Biological Chemistry, 2008, 283, 11652-11660.	3.4	49
22	Metal binding to Bacillus subtilis ferrochelatase and interaction between metal sites. Journal of Biological Inorganic Chemistry, 2003, 8, 452-458.	2.6	48
23	EM single particle analysis of the ATP-dependent Bchl complex of magnesium chelatase: an AAA+ hexamer. Journal of Structural Biology, 2004, 146, 227-233.	2.8	47
24	Design, synthesis, biological evaluation and X-ray structural studies of potent human dihydroorotate dehydrogenase inhibitors based on hydroxylated azole scaffolds. European Journal of Medicinal Chemistry, 2017, 129, 287-302.	5.5	46
25	A New Cryo-EM Single-Particle Ab Initio Reconstruction Method Visualizes Secondary Structure Elements in an ATP-Fueled AAA+ Motor. Journal of Molecular Biology, 2008, 375, 934-947.	4.2	44
26	Structural modelling of the DNAJB6 oligomeric chaperone shows a peptide-binding cleft lined with conserved S/T-residues at the dimer interface. Scientific Reports, 2018, 8, 5199.	3.3	43
27	Transmembrane topology of FRO2, a ferric chelate reductase from Arabidopsis thaliana. Plant Molecular Biology, 2006, 62, 215-221.	3.9	42
28	Structural Basis of the Iron Storage Function of Frataxin from Single-Particle Reconstruction of the Iron-Loaded Oligomer. Biochemistry, 2008, 47, 4948-4954.	2.5	40
29	Structure of ribosomal protein TL5 complexed with RNA provides new insights into the CTC family of stress proteins. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 968-976.	2.5	38
30	The AAA+ motor complex of subunits CobS and CobT of cobaltochelatase visualized by single particle electron microscopy. Journal of Structural Biology, 2009, 167, 227-234.	2.8	38
31	Characterization of insulin microcrystals using powder diffraction and multivariate data analysis. Journal of Applied Crystallography, 2006, 39, 391-400.	4.5	37
32	Metallation of the Transition-state Inhibitor N-methyl Mesoporphyrin by Ferrochelatase: Implications for the Catalytic Reaction Mechanism. Journal of Molecular Biology, 2005, 352, 1081-1090.	4.2	36
33	Archaeal ribosomal protein L1: the structure provides new insights into RNA binding of the L1 protein family. Structure, 2000, 8, 363-371.	3.3	35
34	In Vivo and In Vitro Studies of Bacillus subtilis Ferrochelatase Mutants Suggest Substrate Channeling in the Heme Biosynthesis Pathway. Journal of Bacteriology, 2002, 184, 4018-4024.	2.2	33
35	Structural aspects of protein synthesis. Nature Structural Biology, 1997, 4, 767-771.	9.7	31
36	Crystal structure of ribosomal protein S8 from Thermus thermophilus reveals a high degree of structural conservation of a specific RNA binding site 1 1Edited by K. Nagai. Journal of Molecular Biology, 1998, 279, 233-244.	4.2	29

SALAM AL-KARADAGHI

#	Article	IF	CITATIONS
37	N-Acetyl-3-aminopyrazoles block the non-canonical NF-kB cascade by selectively inhibiting NIK. MedChemComm, 2018, 9, 963-968.	3.4	27
38	Inhibition of Human DHODH by 4â€Hydroxycoumarins, Fenamic Acids, and <i>N</i> â€(Alkylcarbonyl)anthranilic Acids Identified by Structureâ€Guided Fragment Selection. ChemMedChem, 2010, 5, 608-617.	3.2	26
39	Cloning, expression, characterisation and three-dimensional structure determination of Caenorhabditis elegansspermidine synthase. FEBS Letters, 2005, 579, 6037-6043.	2.8	25
40	ATPase activity associated with the magnesium chelatase H-subunit of the chlorophyll biosynthetic pathway is an artefact. Biochemical Journal, 2006, 400, 477-484.	3.7	24
41	Architecture of the Human Mitochondrial Iron-Sulfur Cluster Assembly Machinery. Journal of Biological Chemistry, 2016, 291, 21296-21321.	3.4	24
42	4-Hydroxy-N-[3,5-bis(trifluoromethyl)phenyl]-1,2,5-thiadiazole-3-carboxamide: a novel inhibitor of the canonical NF-I⁰B cascade. MedChemComm, 2017, 8, 1850-1855.	3.4	23
43	Hydroxyazole scaffold-based Plasmodium falciparum dihydroorotate dehydrogenase inhibitors: Synthesis, biological evaluation and X-ray structural studies. European Journal of Medicinal Chemistry, 2019, 163, 266-280.	5.5	23
44	The Structure of the Complex between Yeast Frataxin and Ferrochelatase. Journal of Biological Chemistry, 2016, 291, 11887-11898.	3.4	22
45	Oligomerization Propensity and Flexibility of Yeast Frataxin Studied by X-ray Crystallography and Small-Angle X-ray Scattering. Journal of Molecular Biology, 2011, 414, 783-797.	4.2	21
46	The Molecular Basis of Iron-induced Oligomerization of Frataxin and the Role of the Ferroxidation Reaction in Oligomerization. Journal of Biological Chemistry, 2013, 288, 8156-8167.	3.4	21
47	Crystallographic studies of elongation factor G. Biochemistry and Cell Biology, 1995, 73, 1209-1216.	2.0	20
48	Structure of the Cyanobacterial Magnesium Chelatase H Subunit Determined by Single Particle Reconstruction and Small-angle X-ray Scattering. Journal of Biological Chemistry, 2012, 287, 4946-4956.	3.4	19
49	Targeting Acute Myelogenous Leukemia Using Potent Human Dihydroorotate Dehydrogenase Inhibitors Based on the 2-Hydroxypyrazolo[1,5- <i>a</i>]pyridine Scaffold: SAR of the Biphenyl Moiety. Journal of Medicinal Chemistry, 2021, 64, 5404-5428.	6.4	19
50	Ferrochelatase: the convergence of the porphyrin biosynthesis and iron transport pathways. Journal of Porphyrins and Phthalocyanines, 2011, 15, 350-356.	0.8	18
51	A mutant form of the ribosomal protein L1 reveals conformational flexibility. FEBS Letters, 1997, 411, 53-59.	2.8	17
52	Architecture of the Yeast Mitochondrial Iron-Sulfur Cluster Assembly Machinery. Journal of Biological Chemistry, 2016, 291, 10378-10398.	3.4	17
53	Purification, crystallization, and preliminary X-ray analysis ofBacillus subtilis ferrochelatase. Proteins: Structure, Function and Bioinformatics, 1995, 23, 607-609.	2.6	16
54	A decade of progress in understanding the structural basis of protein synthesis. Progress in Biophysics and Molecular Biology, 2000, 73, 167-193.	2.9	16

SALAM AL-KARADAGHI

#	Article	IF	CITATIONS
55	Iron-induced oligomerization of human FXN81-210 and bacterial CyaY frataxin and the effect of iron chelators. PLoS ONE, 2017, 12, e0188937.	2.5	16
56	Three-dimensional structure of the crystalline surface layer from Aeromonas hydrophila. Journal of Structural Biology, 1988, 101, 92-97.	0.8	15
57	Three-dimensional structures of <i>Plasmodium falciparum</i> spermidine synthase with bound inhibitors suggest new strategies for drug design. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 484-493.	2.5	15
58	Bacterial ferrochelatase turns human: Tyr13 determines the apparent metal specificity of Bacillus subtilis ferrochelatase. Journal of Biological Inorganic Chemistry, 2011, 16, 235-242.	2.6	14
59	Resonance Raman spectroscopic examination of ferrochelatase-induced porphyrin distortion. Journal of Porphyrins and Phthalocyanines, 2011, 15, 357-363.	0.8	13
60	Magnesium Chelatase: The Molecular Motor of Chlorophyll Biosynthesis. Handbook of Porphyrin Science, 2013, , 41-84.	0.8	12
61	Crystallization and preliminary X-ray analysis of theRhodobacter capsulatusmagnesium chelatase Bchl subunit. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 689-690.	2.5	11
62	Refined structure of Cu-substituted alcohol dehydrogenase at 2.1 Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 1995, 51, 805-813.	2.5	9
63	Biochemical characterisation and novel classification of monofunctional S-adenosylmethionine decarboxylase of Plasmodium falciparum. Molecular and Biochemical Parasitology, 2011, 180, 17-26.	1.1	9
64	Interaction of influenza virus proteins with planar bilayer lipid membranes II. Effects of rimantadine and amantadine. Biochimica Et Biophysica Acta - Biomembranes, 1984, 778, 276-280.	2.6	7
65	Crystallization and preliminary investigation of single crystals of deoxyuidine triphosphate nucleotidohydrolase fromEscherichia coli. Proteins: Structure, Function and Bioinformatics, 1988, 4, 71-75.	2.6	7
66	Ribosomal protein L22 fromThermus thermophilus: sequencing overexpression and crystallisation. FEBS Letters, 1995, 369, 229-232.	2.8	7
67	Crystallization and preliminary X-ray analysis of Thermotoga maritima ribosome recycling factor. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 2049-2050.	2.5	5
68	Crystallization and structural studies of components of the protein-synthesizing system from Thermus thermophilus. Journal of Crystal Growth, 1996, 168, 301-307.	1.5	3
69	Immunolocalization of the saposin-like insert of plant aspartic proteinases exhibiting saposin C activity. Expression in young flower tissues and in barley seeds. Physiologia Plantarum, 2005, 125, 051020045109003-???.	5.2	2
70	SAXS and stability studies of iron-induced oligomers of bacterial frataxin CyaY. PLoS ONE, 2017, 12, e0184961.	2.5	1
71	The States, Conformational Dynamics, and Fusidic Acid-Resistant Mutants of Elongation Factor G. , 0, , 359-365.		1
72	Structural Aspects of Protein Synthesis. By Anders Liljas. Pp. 290. Singapore: World Scientific, 2004. Price (paperback) USD 44/GBP 27. ISBN 981-238-867-2 Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1101-1101.	2.5	0

#	Article	IF	CITATIONS
73	Ribosomal Proteins and Their Structural Transitions on and off the Ribosome. , 0, , 63-72.		0