Peter Howell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/172829/publications.pdf

Version: 2024-02-01

430874 454955 1,132 65 18 30 h-index citations g-index papers 67 67 67 613 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Exchange of Stuttering From Function Words to Content Words With Age. Journal of Speech, Language, and Hearing Research, 1999, 42, 345-354.	1.6	129
2	Susceptibility to the effects of delayed auditory feedback. Perception & Psychophysics, 1984, 36, 296-302.	2.3	64
3	Late Childhood Stuttering. Journal of Speech, Language, and Hearing Research, 2008, 51, 669-687.	1.6	52
4	Utterance rate and linguistic properties as determinants of lexical dysfluencies in children who stutter. Journal of the Acoustical Society of America, 1999, 105, 481-490.	1.1	50
5	Signs of developmental stuttering up to age eight and at 12 plus. Clinical Psychology Review, 2007, 27, 287-306.	11.4	44
6	Phonetic difficulty and stuttering in English. Clinical Linguistics and Phonetics, 2006, 20, 703-716.	0.9	42
7	Predicting Persistence of and Recovery from Stuttering by the Teenage Years Based on Information Gathered at Age 8 Years. Journal of Developmental and Behavioral Pediatrics, 2011, 32, 196-205.	1.1	41
8	Phonetic complexity and stuttering in Spanish. Clinical Linguistics and Phonetics, 2007, 21, 111-127.	0.9	40
9	Acoustic analysis and perception of vowels in stuttered speech. Journal of the Acoustical Society of America, 1986, 79, 1571-1579.	1.1	39
10	Timing interference to speech in altered listening conditions. Journal of the Acoustical Society of America, 2002, 111, 2842-2852.	1.1	38
11	Cue trading in the production and perception of vowel stress. Journal of the Acoustical Society of America, 1993, 94, 2063-2073.	1.1	30
12	Acoustic analysis and perception of vowels in children's and teenagers' stuttered speech. Journal of the Acoustical Society of America, 1992, 91, 1697-1706.	1.1	27
13	Screening school-aged children for risk of stuttering. Journal of Fluency Disorders, 2013, 38, 102-123.	1.7	25
14	Auditory abilities of speakers who persisted, or recovered, from stuttering. Journal of Fluency Disorders, 2006, 31, 257-270.	1.7	24
15	Middle Ear Muscle Activity During Vocalization in Normal Speakers and Stutterers. Acta Oto-Laryngologica, 1986, 102, 396-402.	0.9	21
16	Planning and execution processes in speech control by fluent speakers and speakers who stutter. Journal of Fluency Disorders, 2005, 30, 343-354.	1.7	21
17	Relationship between Speech Production and Perception in People Who Stutter. Frontiers in Human Neuroscience, 2016, 10, 224.	2.0	20
18	Lexical and syntactic context and stuttering. Clinical Linguistics and Phonetics, 1998, 12, 67-78.	0.9	18

#	Article	IF	Citations
19	Changes in the pattern of stuttering over development for children who recover or persist. Clinical Linguistics and Phonetics, 2010, 24, 556-575.	0.9	17
20	Reorganization of brain function after a short-term behavioral intervention for stuttering. Brain and Language, 2017, 168, 12-22.	1.6	17
21	Systematic Review of Machine Learning Approaches for Detecting Developmental Stuttering. IEEE/ACM Transactions on Audio Speech and Language Processing, 2022, 30, 1160-1172.	5.8	17
22	Development of Auditory Sensitivity in Children Who Stutter and Fluent Children. Ear and Hearing, 2004, 25, 265-274.	2.1	16
23	Strength of British English accents in altered listening conditions. Perception & Psychophysics, 2006, 68, 139-153.	2.3	16
24	Comparison of Acoustic and Kinematic Approaches to Measuring Utterance-Level Speech Variability. Journal of Speech, Language, and Hearing Research, 2009, 52, 1088-1096.	1.6	16
25	Function word repetitions emerge when speakers are operantly conditioned to reduce frequency of silent pauses., 2001, 30, 457-474.		15
26	A model of serial order problems in fluent, stuttered and agrammatic speech. Human Movement Science, 2007, 26, 728-741.	1.4	15
27	Modulation of phase-locked neural responses to speech during different arousal states is age-dependent. Neurolmage, 2019, 189, 734-744.	4.2	15
28	The contribution of the excitatory source to the perception of neutral vowels in stuttered speech. Journal of the Acoustical Society of America, 1988, 84, 80-89.	1.1	14
29	The Effects of Gated Speech on the Fluency of Speakers Who Stutter. Folia Phoniatrica Et Logopaedica, 2007, 59, 250-255.	1.1	14
30	Assessment of Sound in the Ear Canal Caused by Movement of the Jaw Relative to the Skull. Scandinavian Audiology, 1988, 17, 93-98.	0.5	13
31	Syntactic development in $\hat{a} \in \mathbb{R}^2$ uent children, children who stutter, and children who have English as an additional language. Child Language Teaching and Therapy, 2003, 19, 311-337.	0.9	13
32	Neural control of rising and falling tones in Mandarin speakers who stutter. Brain and Language, 2012, 123, 211-221.	1.6	13
33	Phonetic complexity and stuttering in Arabic. Clinical Linguistics and Phonetics, 2013, 27, 874-887.	0.9	13
34	Methods of interval selection, presence of noise and their effects on detectability of repetitions and prolongations. Journal of the Acoustical Society of America, 1998, 104, 3558-3567.	1.1	12
35	Identification of fluency and wordâ€finding difficulty in samples of children with diverse language backgrounds. International Journal of Language and Communication Disorders, 2017, 52, 595-611.	1.5	12
36	Planum temporale asymmetry in people who stutter. Journal of Fluency Disorders, 2018, 55, 94-105.	1.7	11

#	Article	IF	CITATIONS
37	Strength of German accent under altered auditory feedback. Perception & Psychophysics, 2001, 63, 501-513.	2.3	10
38	Relationship between speech-evoked neural responses and perception of speech in noise in older adults. Journal of the Acoustical Society of America, 2018, 143, 1333-1345.	1.1	10
39	Is there a Natural Sensitivity at 20 ms in Relative Tone-Onset-Time Continua? A Reanalysis of Hirsh's (1959) Data. , 1987, , 199-209.		10
40	Jaw Movement and Bone-Conduction in Normal Listeners and a Unilateral Hemi-Mandibulectomee. Scandinavian Audiology, 1989, 18, 231-236.	0.5	9
41	Is it necessary to assess fluent symptoms, duration of dysfluent events, and physical concomitants when identifying children who have speech difficulties?. Clinical Linguistics and Phonetics, 2016, 30, 696-719.	0.9	9
42	We Have a Voice: Exploring Participants' Experiences of Stuttering Modification Therapy. American Journal of Speech-Language Pathology, 2018, 27, 1273-1286.	1.8	9
43	Facilities to assist people to research into stammered speech. Stammering Research: an on-line Journal Published By the British Stammering Association, 2004, 1, 130-242.	0.8	9
44	Are Two Muscles Needed for the Normal Functioning of the Mammalian Middle Ear?. Acta Oto-Laryngologica, 1984, 98, 204-207.	0.9	8
45	Comparison of alternative methods for obtaining severity scores of the speech of people who stutter. Clinical Linguistics and Phonetics, 2011, 25, 368-378.	0.9	7
46	Acoustic Analysis of Repetitions in Stutterers' Speech., 1987,, 371-380.		6
47	The University College London Archive of Stuttered Speech (UCLASS). Journal of Speech, Language, and Hearing Research, 2009, 52, 556-69.	1.6	6
48	Neural control of fundamental frequency rise and fall in Mandarin tones. Brain and Language, 2012, 121, 35-46.	1.6	5
49	White and Grey Matter Changes in the Language Network during Healthy Aging. PLoS ONE, 2014, 9, e108077.	2.5	5
50	An Electrical Network Model of Inertially Induced Bone-Conducted Sound. Scandinavian Audiology, 1990, 19, 161-170.	0.5	4
51	Meta-analysis and scientific standards in efficacy research: a reply to Ingham and Bothe and Storch. Journal of Fluency Disorders, 2002, 27, 177-184.	1.7	4
52	Chapter 5: The Speech and Language Characteristics of Developmental Stuttering in English Speakers. , 2011, , 93-138.		4
53	Persian Overall Assessment of the Speaker's Experience of Stuttering for Adults: the Impact of Stuttering on the Persian-Speaking Adults Who Stutter. Iranian Rehabilitation Journal, 2018, , 131-138.	0.3	4
54	Do individuals with fragile X syndrome show developmental stuttering or not? Comment on "Speech fluency in fragile X syndrome―by van Borsel, Dor and Rondal Clinical Linguistics and Phonetics, 2008, 22, 163-167.	0.9	3

#	Article	IF	CITATIONS
55	Does Working-Memory Training Given to Reception-Class Children Improve the Speech of Children at Risk of Fluency Difficulty?. Frontiers in Psychology, 2020, 11, 568867.	2.1	3
56	Causal Relationship between the Right Auditory Cortex and Speech-Evoked Envelope-Following Response: Evidence from Combined Transcranial Stimulation and Electroencephalography. Cerebral Cortex, 2022, 32, 1437-1454.	2.9	2
57	Phonetic complexity and stuttering in Turkish-speaking children who stutter. Clinical Linguistics and Phonetics, 2021, 35, 996-1009.	0.9	2
58	Speech motor timing and fluency. , 2010, , 215-226.		2
59	The effect of using time intervals of different length on judgements about stuttering. Stammering Research: an on-line Journal Published By the British Stammering Association, 2005, 1, 364-374.	0.8	2
60	Effectiveness of frequency shifted feedback at reducing disfluency for linguistically easy, and difficult, sections of speech (original audio recordings included). Stammering Research: an on-line Journal Published By the British Stammering Association, 2004, 1, 309-315.	0.8	2
61	A CONNECTIONIST EVALUATION OF SCHEMES TO MEASURE DIFFICULTY OF WORDS BASED ON THEIR PHONOLOGICAL STRUCTURE. , 2005, , .		1
62	Identification of neural structures involved in stuttering using vibrotactile feedback. Brain and Language, 2018, 180-182, 50-61.	1.6	1
63	Voice onset time and formant onset frequencies in Arabic stuttered speech. Clinical Linguistics and Phonetics, 2021, 35, 493-508.	0.9	1
64	Jaw Movement and Bone-Conduction in Normal Listeners and a Unilateral Hemi-Mandibulectomee. International Journal of Audiology, 1989, 18, 231-236.	1.7	0
65	Identifying Stuttering in Arabic Speakers Who Stutter: Development of a Non-word Repetition Task and Preliminary Results. Frontiers in Pediatrics, 2022, 10, 750126.	1.9	O