List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1727305/publications.pdf Version: 2024-02-01

	172	451
89,258	154	273
citations	h-index	g-index
	(=0	105.11
652	652	48541
docs citations	times ranked	citing authors
	89,258 citations 652 docs citations	 89,258 154 h-index 652 652 docs citations 652 times ranked

#	Article	IF	CITATIONS
1	Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews, 2012, 41, 2172.	38.1	2,322
2	?-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications. Advanced Materials, 2005, 17, 582-586.	21.0	1,564
3	Cation-Deficient Spinel ZnMn ₂ O ₄ Cathode in Zn(CF ₃ SO ₃) ₂ Electrolyte for Rechargeable Aqueous Zn-Ion Battery. Journal of the American Chemical Society, 2016, 138, 12894-12901.	13.7	1,451
4	Functional Materials for Rechargeable Batteries. Advanced Materials, 2011, 23, 1695-1715.	21.0	1,419
5	Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nature Communications, 2017, 8, 405.	12.8	1,224
6	Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nature Chemistry, 2011, 3, 79-84.	13.6	1,183
7	Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nature Communications, 2018, 9, 1656.	12.8	1,162
8	Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chemical Reviews, 2017, 117, 10121-10211.	47.7	1,157
9	Co3O4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors. Advanced Functional Materials, 2005, 15, 851-857.	14.9	1,138
10	Organic Electrode Materials for Rechargeable Lithium Batteries. Advanced Energy Materials, 2012, 2, 742-769.	19.5	1,125
11	Arylamine organic dyes for dye-sensitized solar cells. Chemical Society Reviews, 2013, 42, 3453.	38.1	1,011
12	Self‣upported Transitionâ€Metalâ€Based Electrocatalysts for Hydrogen and Oxygen Evolution. Advanced Materials, 2020, 32, e1806326.	21.0	986
13	Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions. Advanced Materials, 2016, 28, 9532-9538.	21.0	961
14	Nanoporous Graphitic-C ₃ N ₄ @Carbon Metal-Free Electrocatalysts for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society, 2011, 133, 20116-20119.	13.7	958
15	Recent Advances and Prospects of Cathode Materials for Sodiumâ€lon Batteries. Advanced Materials, 2015, 27, 5343-5364.	21.0	915
16	Materials chemistry for rechargeable zinc-ion batteries. Chemical Society Reviews, 2020, 49, 4203-4219.	38.1	787
17	Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nature Nanotechnology, 2019, 14, 705-711.	31.5	773
18	Prospects of organic electrode materials for practical lithium batteries. Nature Reviews Chemistry, 2020, 4, 127-142.	30.2	772

#	Article	IF	CITATIONS
19	A Leavening Strategy to Prepare Reduced Graphene Oxide Foams. Advanced Materials, 2012, 24, 4144-4150.	21.0	765
20	Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chemical Society Reviews, 2015, 44, 699-728.	38.1	740
21	High-capacity aqueous zinc batteries using sustainable quinone electrodes. Science Advances, 2018, 4, eaao1761.	10.3	716
22	MnO ₂ -Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media. Chemistry of Materials, 2010, 22, 898-905.	6.7	679
23	MoS ₂ Nanoflowers with Expanded Interlayers as Highâ€Performance Anodes for Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2014, 53, 12794-12798.	13.8	670
24	Pyrite FeS ₂ for high-rate and long-life rechargeable sodium batteries. Energy and Environmental Science, 2015, 8, 1309-1316.	30.8	628
25	Enhancing Electrocatalytic Oxygen Reduction on MnO ₂ with Vacancies. Angewandte Chemie - International Edition, 2013, 52, 2474-2477.	13.8	623
26	Facile Oxygen Reduction on a Threeâ€Dimensionally Ordered Macroporous Graphitic C ₃ N ₄ /Carbon Composite Electrocatalyst. Angewandte Chemie - International Edition, 2012, 51, 3892-3896.	13.8	588
27	FeSe ₂ Microspheres as a Highâ€Performance Anode Material for Naâ€lon Batteries. Advanced Materials, 2015, 27, 3305-3309.	21.0	581
28	Ultrasmall Sn Nanoparticles Embedded in Nitrogen-Doped Porous Carbon As High-Performance Anode for Lithium-Ion Batteries. Nano Letters, 2014, 14, 153-157.	9.1	538
29	Tin Nanodots Encapsulated in Porous Nitrogenâ€Doped Carbon Nanofibers as a Freeâ€Standing Anode for Advanced Sodiumâ€Ion Batteries. Advanced Materials, 2015, 27, 6702-6707.	21.0	534
30	Design Strategies toward Enhancing the Performance of Organic Electrode Materials in Metal-Ion Batteries. CheM, 2018, 4, 2786-2813.	11.7	517
31	Template-Directed Materials for Rechargeable Lithium-Ion Batteries. Chemistry of Materials, 2008, 20, 667-681.	6.7	507
32	Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nature Communications, 2015, 6, 7345.	12.8	500
33	Ultrasmall Sn Nanoparticles Embedded in Carbon as Highâ€Performance Anode for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2015, 25, 214-220.	14.9	498
34	Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chemical Society Reviews, 2016, 45, 4340-4363.	38.1	480
35	Rechargeable Mg Batteries with Grapheneâ€like MoS ₂ Cathode and Ultrasmall Mg Nanoparticle Anode. Advanced Materials, 2011, 23, 640-643.	21.0	474
36	Facile Controlled Synthesis of MnO2Nanostructures of Novel Shapes and Their Application in Batteries. Inorganic Chemistry, 2006, 45, 2038-2044.	4.0	473

#	Article	IF	CITATIONS
37	Urchin‣ike CoSe ₂ as a Highâ€Performance Anode Material for Sodiumâ€lon Batteries. Advanced Functional Materials, 2016, 26, 6728-6735.	14.9	471
38	An Aqueous Rechargeable Zincâ€Organic Battery with Hybrid Mechanism. Advanced Functional Materials, 2018, 28, 1804975.	14.9	462
39	Nestâ€like Silicon Nanospheres for Highâ€Capacity Lithium Storage. Advanced Materials, 2007, 19, 4067-4070.	21.0	455
40	Combination of Lightweight Elements and Nanostructured Materials for Batteries. Accounts of Chemical Research, 2009, 42, 713-723.	15.6	454
41	Largeâ€Area Carbon Nanosheets Doped with Phosphorus: A Highâ€Performance Anode Material for Sodiumâ€Ion Batteries. Advanced Science, 2017, 4, 1600243.	11.2	450
42	A Porous Network of Bismuth Used as the Anode Material for Highâ€Energyâ€Density Potassiumâ€ion Batteries. Angewandte Chemie - International Edition, 2018, 57, 4687-4691.	13.8	448
43	Single Nickel Atoms on Nitrogenâ€Doped Graphene Enabling Enhanced Kinetics of Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1903955.	21.0	447
44	Advanced Organic Electrode Materials for Rechargeable Sodiumâ€ion Batteries. Advanced Energy Materials, 2017, 7, 1601792.	19.5	438
45	Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1701415.	19.5	436
46	A Microporous Covalent–Organic Framework with Abundant Accessible Carbonyl Groups for Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2018, 57, 9443-9446.	13.8	431
47	Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nature Communications, 2020, 11, 4463.	12.8	431
48	Advances and Challenges for the Electrochemical Reduction of CO ₂ to CO: From Fundamentals to Industrialization. Angewandte Chemie - International Edition, 2021, 60, 20627-20648.	13.8	408
49	Electrochemical Hydrogen Storage in MoS2Nanotubes. Journal of the American Chemical Society, 2001, 123, 11813-11814.	13.7	398
50	Shape-Controlled Synthesis of Ternary Chalcogenide ZnIn2S4and CuIn(S,Se)2Nano-/Microstructures via Facile Solution Route. Journal of the American Chemical Society, 2006, 128, 7222-7229.	13.7	397
51	Cobaltâ€Doped FeS ₂ Nanospheres with Complete Solid Solubility as a Highâ€Performance Anode Material for Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 12822-12826.	13.8	394
52	High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy and Environmental Science, 2017, 10, 552-557.	30.8	391
53	CoS Quantum Dot Nanoclusters for Highâ€Energy Potassiumâ€Ion Batteries. Advanced Functional Materials, 2017, 27, 1702634	14.9	391
54	All-Solid-State Lithium Organic Battery with Composite Polymer Electrolyte and Pillar[5]quinone Cathode. Journal of the American Chemical Society, 2014, 136, 16461-16464.	13.7	375

#	Article	IF	CITATIONS
55	Magnesium–air batteries: from principle to application. Materials Horizons, 2014, 1, 196-206.	12.2	371
56	New Triphenylamine-Based Organic Dyes for Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 4465-4472.	3.1	366
57	All Organic Sodiumâ€ion Batteries with Na ₄ C ₈ H ₂ O ₆ . Angewandte Chemie - International Edition, 2014, 53, 5892-5896.	13.8	363
58	Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chemical Science, 2013, 4, 1330.	7.4	355
59	Organic Li ₄ C ₈ H ₂ O ₆ Nanosheets for Lithium-Ion Batteries. Nano Letters, 2013, 13, 4404-4409.	9.1	352
60	Ni1-xPtx (x = 0â^'0.12) Hollow Spheres as Catalysts for Hydrogen Generation from Ammonia Borane. Inorganic Chemistry, 2007, 46, 788-794.	4.0	350
61	Fabrication of Spinel One-Dimensional Architectures by Single-Spinneret Electrospinning for Energy Storage Applications. ACS Nano, 2015, 9, 1945-1954.	14.6	349
62	Na ₃ V ₂ (PO ₄) ₃ @C core–shell nanocomposites for rechargeable sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 8668-8675.	10.3	348
63	MnFe ₂ O ₄ @C Nanofibers as High-Performance Anode for Sodium-Ion Batteries. Nano Letters, 2016, 16, 3321-3328.	9.1	348
64	Electrolyte and Interface Engineering for Solid-State Sodium Batteries. Joule, 2018, 2, 1747-1770.	24.0	346
65	Bulk Bismuth as a Highâ€Capacity and Ultralong Cycleâ€Life Anode for Sodiumâ€Ion Batteries by Coupling with Glymeâ€Based Electrolytes. Advanced Materials, 2017, 29, 1702212.	21.0	343
66	Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nature Communications, 2018, 9, 2373.	12.8	336
67	New Triphenylamine-Based Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 874-880.	3.1	334
68	Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chemical Society Reviews, 2016, 45, 1225-1241.	38.1	325
69	Reversible Oxygen Redox Chemistry in Aqueous Zincâ€lon Batteries. Angewandte Chemie - International Edition, 2019, 58, 7062-7067.	13.8	321
70	3D Porous γâ€Fe ₂ O ₃ @C Nanocomposite as Highâ€Performance Anode Material of Naâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1401123.	19.5	320
71	A "skeleton/skin―strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy and Environmental Science, 2012, 5, 8726.	30.8	312
72	A Selfâ€Healing Integrated Allâ€inâ€One Zincâ€Ion Battery. Angewandte Chemie - International Edition, 2019, 58 4313-4317.	' 13.8	311

#	Article	IF	CITATIONS
73	Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy and Environmental Science, 2011, 4, 1440.	30.8	310
74	MoS ₂ Nanoflowers with Expanded Interlayers as Highâ€Performance Anodes for Sodiumâ€ŀon Batteries. Angewandte Chemie, 2014, 126, 13008-13012.	2.0	310
75	A Flexible Nanostructured Paper of a Reduced Graphene Oxide–Sulfur Composite for Highâ€Performance Lithium–Sulfur Batteries with Unconventional Configurations. Advanced Materials, 2016, 28, 9629-9636.	21.0	308
76	Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1,3,5-benzenetribenzoate)2. Journal of Power Sources, 2006, 160, 542-547.	7.8	301
77	High-Power Alkaline Zn-MnO2 Batteries Using γ-MnO2 Nanowires/Nanotubes and Electrolytic Zinc Powder. Advanced Materials, 2005, 17, 2753-2756.	21.0	295
78	Magnesium Nanowires:Â Enhanced Kinetics for Hydrogen Absorption and Desorption. Journal of the American Chemical Society, 2007, 129, 6710-6711.	13.7	294
79	Fused Heteroaromatic Organic Compounds for Highâ€Power Electrodes of Rechargeable Lithium Batteries. Advanced Energy Materials, 2013, 3, 600-605.	19.5	293
80	Reversible Hydrogen Storage via Titanium-Catalyzed LiAlH4 and Li3AlH6. Journal of Physical Chemistry B, 2001, 105, 11214-11220.	2.6	289
81	Development of MoS ₂ –CNT Composite Thin Film from Layered MoS ₂ for Lithium Batteries. Advanced Energy Materials, 2013, 3, 798-805.	19.5	282
82	α-CuV ₂ O ₆ Nanowires: Hydrothermal Synthesis and Primary Lithium Battery Application. Journal of the American Chemical Society, 2008, 130, 5361-5367.	13.7	281
83	Porous Multishelled Ni ₂ P Hollow Microspheres as an Active Electrocatalyst for Hydrogen and Oxygen Evolution. Chemistry of Materials, 2017, 29, 8539-8547.	6.7	279
84	Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries. Nature Communications, 2020, 11, 178.	12.8	279
85	Aqueous Batteries Operated at â~'50 °C. Angewandte Chemie - International Edition, 2019, 58, 16994-169	9913.8	277
86	Quasi‣olid‣tate Rechargeable Lithiumâ€Ion Batteries with a Calix[4]quinone Cathode and Gel Polymer Electrolyte. Angewandte Chemie - International Edition, 2013, 52, 9162-9166.	13.8	271
87	Cobaltâ€Doped FeS ₂ Nanospheres with Complete Solid Solubility as a Highâ€Performance Anode Material for Sodiumâ€Ion Batteries. Angewandte Chemie, 2016, 128, 13014-13018.	2.0	268
88	Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon, 2019, 141, 400-416.	10.3	268
89	Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy and Environmental Science, 2011, 4, 3668.	30.8	264
90	Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy, 2021, 83, 105854.	16.0	264

#	Article	IF	CITATIONS
91	LiNi _{0.5} Mn _{1.5} O ₄ Porous Nanorods as High-Rate and Long-Life Cathodes for Li-Ion Batteries. Nano Letters, 2013, 13, 2822-2825.	9.1	257
92	Electrodeposition synthesis and electrochemical properties of nanostructured Î ³ -MnO2 films. Journal of Power Sources, 2006, 162, 727-734.	7.8	253
93	Cobalt Sulfide Nanosheet/Graphene/Carbon Nanotube Nanocomposites as Flexible Electrodes for Hydrogen Evolution. Angewandte Chemie - International Edition, 2014, 53, 12594-12599.	13.8	252
94	Cyclohexanehexone with Ultrahigh Capacity as Cathode Materials for Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 7020-7024.	13.8	252
95	Structural and chemical synergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy, 2017, 35, 281-289.	16.0	247
96	Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries. Advanced Materials, 2017, 29, 1607007.	21.0	247
97	Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries. Journal of Power Sources, 2015, 293, 626-634.	7.8	245
98	Hydrogenated Uniform Pt Clusters Supported on Porous CaMnO ₃ as a Bifunctional Electrocatalyst for Enhanced Oxygen Reduction and Evolution. Advanced Materials, 2014, 26, 2047-2051.	21.0	244
99	A graphene-like MoS ₂ /graphene nanocomposite as a highperformance anode for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 13109-13115.	10.3	238
100	Oxocarbon Salts for Fast Rechargeable Batteries. Angewandte Chemie - International Edition, 2016, 55, 12528-12532.	13.8	238
101	Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Research, 2014, 7, 199-208.	10.4	233
102	TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chemical Communications, 2004, , 2080.	4.1	232
103	Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Research, 2013, 6, 38-46.	10.4	232
104	Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. Journal of Energy Chemistry, 2019, 38, 20-25.	12.9	225
105	Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries. Journal of the Electrochemical Society, 1999, 146, 3606-3612.	2.9	223
106	Improved hydrogen generation from alkaline NaBH4NaBH4 solution using carbon-supported Co–BCo–B as catalysts. International Journal of Hydrogen Energy, 2007, 32, 4711-4716.	7.1	223
107	First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. Journal of Materials Chemistry A, 2014, 2, 5358.	10.3	222
108	A chemically self-charging aqueous zinc-ion battery. Nature Communications, 2020, 11, 2199.	12.8	221

#	Article	lF	CITATIONS
109	Carbon nanotube architectures as catalyst supports for proton exchange membrane fuel cells. Energy and Environmental Science, 2010, 3, 1286.	30.8	218
110	One-Dimensional Rod-Like Sb ₂ S ₃ -Based Anode for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 19362-19369.	8.0	218
111	Highly Compressible and Allâ€Solidâ€State Supercapacitors Based on Nanostructured Composite Sponge. Advanced Materials, 2015, 27, 6002-6008.	21.0	217
112	Enhanced Electrochemical Kinetics and Polysulfide Traps of Indium Nitride for Highly Stable Lithium–Sulfur Batteries. ACS Nano, 2018, 12, 9578-9586.	14.6	217
113	Ni(OH)2 Tubes with Mesoscale Dimensions as Positive-Electrode Materials of Alkaline Rechargeable Batteries. Angewandte Chemie - International Edition, 2004, 43, 4212-4216.	13.8	215
114	CuO particles and plates: Synthesis and gas-sensor application. Materials Research Bulletin, 2008, 43, 2380-2385.	5.2	214
115	Template-Synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2Nanotubes as the Cathode Materials of Lithium Ion Batteries. Journal of Physical Chemistry B, 2005, 109, 14017-14024.	2.6	209
116	Vapor-Transportation Preparation and Reversible Lithium Intercalation/Deintercalation of α-MoO3Microrods. Journal of Physical Chemistry B, 2006, 110, 119-124.	2.6	206
117	Transition metal vanadium oxides and vanadate materials for lithium batteries. Journal of Materials Chemistry, 2011, 21, 9841.	6.7	205
118	Nonstoichiometric Perovskite CaMnO _{3â^ʾl´} for Oxygen Electrocatalysis with High Activity. Inorganic Chemistry, 2014, 53, 9106-9114.	4.0	202
119	Rechargeable Roomâ€Temperature Na–CO ₂ Batteries. Angewandte Chemie - International Edition, 2016, 55, 6482-6486.	13.8	202
120	Compositional effects of PEDOT-PSS/single walled carbon nanotube films on supercapacitor device performance. Journal of Materials Chemistry, 2011, 21, 15987.	6.7	201
121	Rechargeable Lithium-Iodine Batteries with Iodine/Nanoporous Carbon Cathode. Nano Letters, 2015, 15, 5982-5987.	9.1	201
122	Stabilizing nickel-rich layered oxide cathodes by magnesium doping for rechargeable lithium-ion batteries. Chemical Science, 2019, 10, 1374-1379.	7.4	201
123	Electrospun Thin-Walled CuCo ₂ O ₄ @C Nanotubes as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn–Air Batteries. Nano Letters, 2017, 17, 7989-7994.	9.1	199
124	Integrated Carbon/Red Phosphorus/Graphene Aerogel 3D Architecture via Advanced Vaporâ€Redistribution for Highâ€Energy Sodiumâ€ion Batteries. Advanced Energy Materials, 2016, 6, 1601037.	19.5	198
125	Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. Journal of Materials Chemistry A, 2013, 1, 9484.	10.3	194
126	Quasi–solid state rechargeable Na-CO ₂ batteries with reduced graphene oxide Na anodes. Science Advances, 2017, 3, e1602396.	10.3	193

#	Article	IF	CITATIONS
127	Titanium Disulfide Nanotubes as Hydrogen-Storage Materials. Journal of the American Chemical Society, 2003, 125, 5284-5285.	13.7	192
128	Facile Spraying Synthesis and Highâ€Performance Sodium Storage of Mesoporous MoS ₂ /C Microspheres. Advanced Functional Materials, 2016, 26, 911-918.	14.9	189
129	A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a Highâ€Performance Rechargeable Lithiumâ€Ion Battery. Angewandte Chemie - International Edition, 2016, 55, 6428-6432.	13.8	183
130	Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nature Communications, 2021, 12, 2256.	12.8	183
131	SnO2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries. Journal of Power Sources, 2011, 196, 2195-2201.	7.8	180
132	Designing Anionâ€Type Waterâ€Free Zn ²⁺ Solvation Structure for Robust Zn Metal Anode. Angewandte Chemie - International Edition, 2021, 60, 23357-23364.	13.8	179
133	Facile Synthesis of Nanoporous γ-MnO ₂ Structures and Their Application in Rechargeable Li-Ion Batteries. Crystal Growth and Design, 2008, 8, 2799-2805.	3.0	178
134	Ag Nanowires Coated with Ag/Pd Alloy Sheaths and Their Use as Substrates for Reversible Absorption and Desorption of Hydrogen. Journal of the American Chemical Society, 2004, 126, 5940-5941.	13.7	177
135	An Insoluble Benzoquinoneâ€Based Organic Cathode for Use in Rechargeable Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2017, 56, 12561-12565.	13.8	177
136	Intercalation pseudocapacitance in flexible and self-standing V2O3 porous nanofibers for high-rate and ultra-stable K ion storage. Nano Energy, 2018, 50, 462-467.	16.0	177
137	Sulfur Nanodots Electrodeposited on Ni Foam as High-Performance Cathode for Li–S Batteries. Nano Letters, 2015, 15, 721-726.	9.1	175
138	Freestanding carbon fiber cloth/sulfur composites for flexible room-temperature sodium-sulfur batteries. Energy Storage Materials, 2017, 8, 77-84.	18.0	175
139	A quantum-chemical study on the discharge reaction mechanism of lithium-sulfur batteries. Journal of Energy Chemistry, 2013, 22, 72-77.	12.9	174
140	Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Materials Today, 2021, 43, 132-165.	14.2	174
141	Porous Li2FeSiO4/C nanocomposite as the cathode material of lithium-ion batteries. Journal of Power Sources, 2012, 198, 229-235.	7.8	173
142	High-performance rechargeable aqueous Zn-ion batteries with a poly(benzoquinonyl sulfide) cathode. Inorganic Chemistry Frontiers, 2018, 5, 1391-1396.	6.0	173
143	ZnFe2O4 tubes: Synthesis and application to gas sensors with high sensitivity and low-energy consumption. Sensors and Actuators B: Chemical, 2007, 120, 403-410.	7.8	172
144	Conducting Poly(aniline) Nanotubes and Nanofibers: Controlled Synthesis and Application in Lithium/Poly(aniline) Rechargeable Batteries. Chemistry - A European Journal, 2006, 12, 3082-3088.	3.3	171

#	Article	IF	CITATIONS
145	Grapheneâ€Based Nanomaterials for Sodiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1702469.	19.5	170
146	Synthesis of open-ended MoS2 nanotubes and the application as the catalyst of methanation. Chemical Communications, 2002, , 1722-1723.	4.1	168
147	Hydriding properties of LaNi3 and CaNi3 and their substitutes with PuNi3-type structure. Journal of Alloys and Compounds, 2000, 302, 304-313.	5.5	167
148	WS ₂ Nanowires as a Highâ€Performance Anode for Sodiumâ€ion Batteries. Chemistry - A European Journal, 2015, 21, 11878-11884.	3.3	167
149	Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Research, 2015, 8, 3384-3393.	10.4	165
150	Stable layered Ni-rich LiNi _{0.9} Co _{0.07} Al _{0.03} O ₂ microspheres assembled with nanoparticles as high-performance cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 2724-2731.	10.3	165
151	First-Principles Study of Zigzag MoS ₂ Nanoribbon As a Promising Cathode Material for Rechargeable Mg Batteries. Journal of Physical Chemistry C, 2012, 116, 1307-1312.	3.1	164
152	Porous calcium–manganese oxide microspheres for electrocatalytic oxygen reduction with high activity. Chemical Science, 2013, 4, 368-376.	7.4	164
153	Potassium–Sulfur Batteries: A New Member of Room-Temperature Rechargeable Metal–Sulfur Batteries. Inorganic Chemistry, 2014, 53, 9000-9005.	4.0	163
154	Energy Storage Chemistry in Aqueous Zinc Metal Batteries. ACS Energy Letters, 2020, 5, 3569-3590.	17.4	163
155	Self-Assembled Nickel Hydroxide Three-Dimensional Nanostructures:Â A Nanomaterial for Alkaline Rechargeable Batteries. Crystal Growth and Design, 2007, 7, 170-174.	3.0	159
156	Stretchable Lithiumâ€Ion Batteries Enabled by Deviceâ€Scaled Wavy Structure and Elasticâ€Sticky Separator. Advanced Energy Materials, 2017, 7, 1701076.	19.5	158
157	Flexible Li O ₂ Batteries with Liquidâ€Free Electrolyte. Angewandte Chemie - International Edition, 2017, 56, 5785-5789.	13.8	156
158	Superhydrophilic amorphous Co–B–P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 22062-22069.	10.3	156
159	Highâ€Performance Organic Lithium Batteries with an Etherâ€Based Electrolyte and 9,10â€Anthraquinone (AQ)/CMKâ€3 Cathode. Advanced Science, 2015, 2, 1500018.	11.2	155
160	Selective Synthesis of Manganese Oxide Nanostructures for Electrocatalytic Oxygen Reduction. ACS Applied Materials & amp; Interfaces, 2009, 1, 460-466.	8.0	154
161	Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures. Chemical Communications, 2012, 48, 7334.	4.1	153
162	Chaotropic Anion and Fast-Kinetics Cathode Enabling Low-Temperature Aqueous Zn Batteries. ACS Energy Letters, 2021, 6, 2704-2712.	17.4	153

#	Article	IF	CITATIONS
163	Metallic Magnesium Nano/Mesoscale Structures: Their Shape-Controlled Preparation and Mg/Air Battery Applications. Angewandte Chemie - International Edition, 2006, 45, 6009-6012.	13.8	152
164	3D-Printed Ultra-Robust Surface-Doped Porous Silicone Sensors for Wearable Biomonitoring. ACS Nano, 2020, 14, 1520-1532.	14.6	151
165	Synthesis, characterization and application of SnSx (x=1, 2) nanoparticles. Materials Chemistry and Physics, 2005, 93, 557-566.	4.0	150
166	Facile preparation of NH ₂ -functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 2494-2499.	10.3	149
167	PtxNi1â~'x nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2009, 34, 8785-8791.	7.1	146
168	Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures. Nano Research, 2016, 9, 198-206.	10.4	142
169	A Novel NASICONâ€Type Na ₄ MnCr(PO ₄) ₃ Demonstrating the Energy Density Record of Phosphate Cathodes for Sodiumâ€Ion Batteries. Advanced Materials, 2020, 32, e1906348.	21.0	142
170	Porous perovskite CaMnO3as an electrocatalyst for rechargeable Li–O2batteries. Chemical Communications, 2014, 50, 1497-1499.	4.1	140
171	Hollow Porous Bowl-like Nitrogen-Doped Cobalt/Carbon Nanocomposites with Enhanced Electromagnetic Wave Absorption. Chemistry of Materials, 2021, 33, 1789-1798.	6.7	139
172	A 3D Hydroxylated MXene/Carbon Nanotubes Composite as a Scaffold for Dendriteâ€Free Sodiumâ€Metal Electrodes. Angewandte Chemie - International Edition, 2020, 59, 16705-16711.	13.8	138
173	Challenges and advances in wide-temperature rechargeable lithium batteries. Energy and Environmental Science, 2022, 15, 1711-1759.	30.8	138
174	Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells. Coordination Chemistry Reviews, 2009, 253, 2805-2813.	18.8	137
175	Recent progress on lithium-ion batteries with high electrochemical performance. Science China Chemistry, 2019, 62, 533-548.	8.2	136
176	Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries. Nanoscale, 2014, 6, 2827-2832.	5.6	133
177	Synthesis, Characterization, and Electrochemical Properties of Ag2V4O11and AgVO31-D Nano/Microstructures. Journal of Physical Chemistry B, 2006, 110, 24855-24863.	2.6	132
178	Molecular Electrostatic Potential: A New Tool to Predict the Lithiation Process of Organic Battery Materials. Journal of Physical Chemistry Letters, 2018, 9, 3573-3579.	4.6	131
179	Li3V2(PO4)3@C core–shell nanocomposite as a superior cathode material for lithium-ion batteries. Nanoscale, 2013, 5, 6485.	5.6	130
180	Mechanistic Evolution of Aprotic Lithiumâ€Oxygen Batteries. Advanced Energy Materials, 2017, 7, 1602934.	19.5	130

#	Article	IF	CITATIONS
181	High-Capacity and Ultrafast Na-Ion Storage of a Self-Supported 3D Porous Antimony Persulfide–Graphene Foam Architecture. Nano Letters, 2017, 17, 3668-3674.	9.1	129
182	Graphene-based materials for flexible energy storage devices. Journal of Energy Chemistry, 2018, 27, 12-24.	12.9	129
183	Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithiumion batteries: Nano vs micro, ordered phase (P4332) vs disordered phase (Fd \$ar 3\$ m). Nano Research, 2013, 6, 679-687.	10.4	126
184	Designing Electrolyte Structure to Suppress Hydrogen Evolution Reaction in Aqueous Batteries. ACS Energy Letters, 2021, 6, 2174-2180.	17.4	126
185	Semiconducting Metal–Organic Polymer Nanosheets for a Photoinvolved Li–O ₂ Battery under Visible Light. Journal of the American Chemical Society, 2021, 143, 1941-1947.	13.7	124
186	Orthoquinone–Based Covalent Organic Frameworks with Ordered Channel Structures for Ultrahigh Performance Aqueous Zinc–Organic Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	124
187	Lithium Intercalation in Open-Ended TiS2 Nanotubes. Angewandte Chemie - International Edition, 2003, 42, 2147-2151.	13.8	123
188	Ultrasmall Li2S Nanoparticles Anchored in Graphene Nanosheets for High-Energy Lithium-Ion Batteries. Scientific Reports, 2014, 4, 6467.	3.3	122
189	Selenium Phosphide (Se ₄ P ₄) as a New and Promising Anode Material for Sodiumâ€lon Batteries. Advanced Energy Materials, 2017, 7, 1601973.	19.5	122
190	Proton Intercalation/Deâ€Intercalation Dynamics in Vanadium Oxides for Aqueous Aluminum Electrochemical Cells. Angewandte Chemie - International Edition, 2020, 59, 3048-3052.	13.8	122
191	A Porous Network of Bismuth Used as the Anode Material for Highâ€Energyâ€Density Potassiumâ€lon Batteries. Angewandte Chemie, 2018, 130, 4777-4781.	2.0	119
192	Defect electrocatalytic mechanism: concept, topological structure and perspective. Materials Chemistry Frontiers, 2018, 2, 1250-1268.	5.9	119
193	Electroless Formation of a Fluorinated Li/Na Hybrid Interphase for Robust Lithium Anodes. Journal of the American Chemical Society, 2021, 143, 2829-2837.	13.7	119
194	Hydrolytic dehydrogenation of ammonia borane catalyzed by carbon supported Co core–Pt shell nanoparticles. Journal of Power Sources, 2011, 196, 2785-2789.	7.8	118
195	Micro-nanostructured CuO/C spheres as high-performance anode materials for Na-ion batteries. Nanoscale, 2015, 7, 2770-2776.	5.6	118
196	A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways ofÂdipotassium terephthalate. Chemical Science, 2019, 10, 2048-2052.	7.4	118
197	Rapid Synthesis and Efficient Electrocatalytic Oxygen Reduction/Evolution Reaction of CoMn ₂ O ₄ Nanodots Supported on Graphene. Inorganic Chemistry, 2015, 54, 5467-5474.	4.0	117
198	High-performance sodium batteries with the 9,10-anthraquinone/CMK-3 cathode and an ether-based electrolyte. Chemical Communications, 2015, 51, 10244-10247.	4.1	117

#	Article	IF	CITATIONS
199	Hierarchical Engineering of Porous P2â€Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ Nanofibers Assembled by Nanoparticles Enables Superior Sodiumâ€ion Storage Cathodes. Advanced Functional Materials, 2020, 30, 1907837.	14.9	117
200	Electrodeposition of (hydro)oxides for an oxygen evolution electrode. Chemical Science, 2020, 11, 10614-10625.	7.4	117
201	A Heterometallic Porous Material for Hydrogen Adsorption. Inorganic Chemistry, 2007, 46, 4530-4534.	4.0	116
202	Rechargeable aqueous zinc–iodine batteries: pore confining mechanism and flexible device application. Chemical Communications, 2018, 54, 6792-6795.	4.1	116
203	Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode. EScience, 2022, 2, 116-124.	41.6	116
204	A Twoâ€Dimensional Metal–Organic Polymer Enabled by Robust Nickel–Nitrogen and Hydrogen Bonds for Exceptional Sodiumâ€lon Storage. Angewandte Chemie - International Edition, 2020, 59, 22126-22131.	13.8	115
205	Review—Advanced Carbon-Supported Organic Electrode Materials for Lithium (Sodium)-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A2393-A2405.	2.9	114
206	Thermally Stable Silicate Nanotubes. Angewandte Chemie - International Edition, 2004, 43, 2017-2020.	13.8	113
207	A Selfâ€Healing Integrated Allâ€inâ€One Zincâ€ion Battery. Angewandte Chemie, 2019, 131, 4357-4361.	2.0	113
208	ε-MnO2 nanostructures directly grown on Ni foam: a cathode catalyst for rechargeable Li–O2 batteries. Nanoscale, 2014, 6, 3522.	5.6	112
209	A Soft Hydrogen Storage Material: Poly(Methyl Acrylate)â€Confined Ammonia Borane with Controllable Dehydrogenation. Advanced Materials, 2010, 22, 394-397.	21.0	111
210	Facile polymer-assisted synthesis of LiNi0.5Mn1.5O4 with a hierarchical micro–nano structure and high rate capability. RSC Advances, 2012, 2, 5669.	3.6	111
211	FeS ₂ microspheres with an ether-based electrolyte for high-performance rechargeable lithium batteries. Journal of Materials Chemistry A, 2015, 3, 12898-12904.	10.3	111
212	High Anode Performance of in Situ Formed Cu ₂ Sb Nanoparticles Integrated on Cu Foil via Replacement Reaction for Sodium-Ion Batteries. ACS Energy Letters, 2017, 2, 256-262.	17.4	111
213	Recycling Application of Li–MnO ₂ Batteries as Rechargeable Lithium–Air Batteries. Angewandte Chemie - International Edition, 2015, 54, 4338-4343.	13.8	109
214	PdNi Hollow Nanoparticles for Improved Electrocatalytic Oxygen Reduction in Alkaline Environments. ACS Applied Materials & Interfaces, 2013, 5, 12708-12715.	8.0	108
215	SiO ₂ -coated LiNi _{0.915} Co _{0.075} Al _{0.01} O ₂ cathode material for rechargeable Li-ion batteries. Nanoscale, 2016, 8, 19263-19269.	5.6	108
216	A study into the extracted ion number for NASICON structured Na ₃ V ₂ (PO ₄) ₃ in sodium-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 17681-17687.	2.8	106

#	Article	IF	CITATIONS
217	Ultrasmall cobalt nanoparticles supported on nitrogen-doped porous carbon nanowires for hydrogen evolution from ammonia borane. Materials Horizons, 2017, 4, 268-273.	12.2	105
218	Photoâ€excited Oxygen Reduction and Oxygen Evolution Reactions Enable a Highâ€Performance Zn–Air Battery. Angewandte Chemie - International Edition, 2020, 59, 18140-18144.	13.8	105
219	Investigation of the Sodium Ion Pathway and Cathode Behavior in Na ₃ V ₂ (PO ₄) ₂ F ₃ Combined via a First Principles Calculation. Langmuir, 2014, 30, 12438-12446.	3.5	104
220	<i>In situ</i> atomic force microscopy study of nano–micro sodium deposition in ester-based electrolytes. Chemical Communications, 2018, 54, 2381-2384.	4.1	104
221	Combining Quinone Cathode and Ionic Liquid Electrolyte for Organic Sodium-Ion Batteries. CheM, 2019, 5, 364-375.	11.7	104
222	Direct Thermal Decomposition of Metal Nitrates in Octadecylamine to Metal Oxide Nanocrystals. Chemistry - A European Journal, 2008, 14, 2507-2513.	3.3	103
223	Largeâ€Area Reduced Graphene Oxide Composite Films for Flexible Asymmetric Sandwich and Microsized Supercapacitors. Advanced Functional Materials, 2018, 28, 1707247.	14.9	103
224	A review of transition-metal boride/phosphide-based materials for catalytic hydrogen generation from hydrolysis of boron-hydrides. Inorganic Chemistry Frontiers, 2018, 5, 760-772.	6.0	103
225	Cobalt nanoparticles embedded in porous N-doped carbon as long-life catalysts for hydrolysis of ammonia borane. Catalysis Science and Technology, 2016, 6, 3443-3448.	4.1	102
226	Robust self-supported anode by integrating Sb2S3 nanoparticles with S,N-codoped graphene to enhance K-storage performance. Science China Chemistry, 2017, 60, 1533-1539.	8.2	102
227	An Alternative to Lithium Metal Anodes: Nonâ€dendritic and Highly Reversible Sodium Metal Anodes for Li–Na Hybrid Batteries. Angewandte Chemie - International Edition, 2018, 57, 14796-14800.	13.8	102
228	Photoinduced Oxygen Reduction Reaction Boosts the Output Voltage of a Zinc–Air Battery. Angewandte Chemie - International Edition, 2019, 58, 12460-12464.	13.8	102
229	MCo2O4 (M=Ni, Cu, Zn) nanotubes: Template synthesis and application in gas sensors. Sensors and Actuators B: Chemical, 2006, 114, 402-409.	7.8	101
230	Lithium transport at silicon thin film: Barrier for high-rate capability anode. Journal of Chemical Physics, 2010, 133, 034701.	3.0	100
231	Recent Advances in 3D Graphene Architectures and Their Composites for Energy Storage Applications. Small, 2019, 15, e1803858.	10.0	99
232	MoS2–Ni Nanocomposites as Catalysts for Hydrodesulfurization of Thiophene and Thiophene Derivatives. Advanced Materials, 2006, 18, 2561-2564.	21.0	98
233	Kinetics of Iodine-Free Redox Shuttles in Dye-Sensitized Solar Cells: Interfacial Recombination and Dye Regeneration. Accounts of Chemical Research, 2015, 48, 1541-1550.	15.6	98
234	Phosphorusâ€Based Materials as the Anode for Sodiumâ€lon Batteries. Small Methods, 2017, 1, 1700216.	8.6	98

#	Article	IF	CITATIONS
235	Stable Na plating/stripping electrochemistry realized by a 3D Cu current collector with thin nanowires. Chemical Communications, 2017, 53, 12910-12913.	4.1	97
236	A Repeated Halving Approach to Fabricate Ultrathin Singleâ€Walled Carbon Nanotube Films for Transparent Supercapacitors. Small, 2013, 9, 518-524.	10.0	96
237	Porphyrinâ€Based Symmetric Redoxâ€Flow Batteries towards Coldâ€Climate Energy Storage. Angewandte Chemie - International Edition, 2018, 57, 3158-3162.	13.8	96
238	Correlating Dye Adsorption Behavior with the Open-Circuit Voltage of Triphenylamine-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 10992-10998.	3.1	95
239	Triphenylamine-Based Dyes Bearing Functionalized 3,4-Propylenedioxythiophene Linkers with Enhanced Performance for Dye-Sensitized Solar Cells. Organic Letters, 2010, 12, 1204-1207.	4.6	95
240	A Flexible All-in-One Lithium-Sulfur Battery. ACS Nano, 2018, 12, 12503-12511.	14.6	95
241	Photoâ€energy Conversion and Storage in an Aprotic Liâ€O ₂ Battery. Angewandte Chemie - International Edition, 2019, 58, 19021-19026.	13.8	94
242	M(Salen)-derived Nitrogen-doped M/C (M = Fe, Co, Ni) Porous Nanocomposites for Electrocatalytic Oxygen Reduction. Scientific Reports, 2014, 4, 4386.	3.3	93
243	Template-free synthesis of porous graphitic carbon nitride/carbon composite spheres for electrocatalytic oxygen reduction reaction. Chemical Communications, 2016, 52, 1725-1728.	4.1	93
244	All Carbon Dual Ion Batteries. ACS Applied Materials & amp; Interfaces, 2018, 10, 35978-35983.	8.0	93
245	The disodium salt of 2,5-dihydroxy-1,4-benzoquinone as anode material for rechargeable sodium ion batteries. Chemical Communications, 2015, 51, 1446-1448.	4.1	91
246	Rechargeable Lithium Batteries with Electrodes of Small Organic Carbonyl Salts and Advanced Electrolytes. Industrial & Engineering Chemistry Research, 2016, 55, 5795-5804.	3.7	91
247	Superior high-rate capability of Na ₃ (VO _{0.5}) ₂ (PO ₄) ₂ F ₂ nanoparticles embedded in porous graphene through the pseudocapacitive effect. Chemical Communications, 2016, 52, 3653-3656	4.1	91
248	Oxygen Bubble-Templated Hierarchical Porous Îμ-MnO ₂ as a Superior Catalyst for Rechargeable Li-O ₂ Batteries. Small, 2015, 11, 809-813.	10.0	90
249	A Lowâ€Strain Potassiumâ€Rich Prussian Blue Analogue Cathode for High Power Potassiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 13050-13056.	13.8	90
250	<i>In situ</i> synthesis of Bi nanoflakes on Ni foam for sodium-ion batteries. Chemical Communications, 2018, 54, 38-41.	4.1	89
251	Biocompatible Shaped Particles from Dried Multilayer Polymer Capsules. Biomacromolecules, 2013, 14, 3830-3841.	5.4	88
252	Flexible supercapacitors based on carbon nanotubes. Chinese Chemical Letters, 2018, 29, 571-581.	9.0	88

#	Article	IF	CITATIONS
253	Review of hydrogen storage in inorganic fullerene-like nanotubes. Applied Physics A: Materials Science and Processing, 2004, 78, 989-994.	2.3	87
254	Biomass Waste-Derived Microporous Carbons with Controlled Texture and Enhanced Hydrogen Uptake. Chemistry of Materials, 2008, 20, 1889-1895.	6.7	87
255	Porous perovskite calcium–manganese oxide microspheres as an efficient catalyst for rechargeable sodium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 3320-3324.	10.3	86
256	Morphology tuning of inorganic nanomaterials grown by precipitation through control of electrolytic dissociation and supersaturation. Nature Chemistry, 2019, 11, 695-701.	13.6	86
257	Tuning Oxygen Redox Chemistry in Liâ€Rich Mnâ€Based Layered Oxide Cathodes by Modulating Cation Arrangement. Advanced Materials, 2019, 31, e1901808.	21.0	86
258	Bistable Magnetoresistance Switching in Exchange-Coupled CoFe ₂ O ₄ –Fe ₃ O ₄ Binary Nanocrystal Superlattices by Self-Assembly and Thermal Annealing. ACS Nano, 2013, 7, 1478-1486.	14.6	85
259	Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector. Nano Energy, 2017, 42, 187-194.	16.0	85
260	Novel hydrogen storage properties of MoS2 nanotubes. Journal of Alloys and Compounds, 2003, 356-357, 413-417.	5.5	83
261	Foldable All-Solid-State Supercapacitors Integrated with Photodetectors. Advanced Functional Materials, 2017, 27, 1604639.	14.9	83
262	Dual-Functional Graphene Carbon as Polysulfide Trapper for High-Performance Lithium Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 5594-5602.	8.0	83
263	Dualâ€Strategy of Cationâ€Doping and Nanoengineering Enables Fast and Stable Sodiumâ€Ion Storage in a Novel Fe/Mnâ€Based Layered Oxide Cathode. Advanced Science, 2020, 7, 2002199.	11.2	83
264	Nickel-iron bimetallic diselenides with enhanced kinetics for high-capacity and long-life magnesium batteries. Nano Energy, 2018, 54, 360-366.	16.0	82
265	Advances and Challenges for the Electrochemical Reduction of CO ₂ to CO: From Fundamentals to Industrialization. Angewandte Chemie, 2021, 133, 20795-20816.	2.0	82
266	Understanding the superior sodium-ion storage in a novel Na3.5Mn0.5V1.5(PO4)3 cathode. Energy Storage Materials, 2019, 23, 25-34.	18.0	81
267	Synthesis of Single Lithium-Ion Conducting Polymer Electrolyte Membrane for Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2019, 2, 3028-3034.	5.1	81
268	Electrocatalytic Methanol Oxidation of Pt _{0.5} Ru _{0.5-} <i>_x</i> Sn <i>_x</i> /c (<i>x</i> = 0â^0.5). Journal of Physical Chemistry C, 2008, 112, 6337-6345.	3.1	80
269	Size effect of lithium peroxide on charging performance of Li–O ₂ batteries. Nanoscale, 2014, 6, 177-180.	5.6	80
270	MCNTs@MnO ₂ Nanocomposite Cathode Integrated with Soluble O ₂ -Carrier Co-salen in Electrolyte for High-Performance Li–Air Batteries. Nano Letters. 2017. 17. 2073-2078.	9.1	80

#	Article	IF	CITATIONS
271	Structure design and mechanism analysis of silicon anode for lithium-ion batteries. Science China Materials, 2019, 62, 1515-1536.	6.3	80
272	Carbon-supported Ni1â^'x@Ptx (xÂ=Â0.32, 0.43, 0.60, 0.67, and 0.80) core–shell nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2011, 36, 1984-1990.	7.1	79
273	2,2′-Bis(3-hydroxy-1,4-naphthoquinone)/CMK-3 nanocomposite as cathode material for lithium-ion batteries. Inorganic Chemistry Frontiers, 2014, 1, 193-199.	6.0	79
274	Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries. Nano Research, 2018, 11, 1345-1357.	10.4	79
275	Sodium-Ion Hybrid Capacitor of High Power and Energy Density. ACS Central Science, 2018, 4, 1261-1265.	11.3	79
276	Dual Interphase Layers In Situ Formed on a Manganese-Based Oxide Cathode Enable Stable Potassium Storage. CheM, 2019, 5, 3220-3231.	11.7	79
277	A Universal Graphene Quantum Dot Tethering Design Strategy to Synthesize Singleâ€Atom Catalysts. Angewandte Chemie - International Edition, 2020, 59, 21885-21889.	13.8	79
278	Magnesium nanostructures for energy storage and conversion. Journal of Materials Chemistry, 2009, 19, 2877.	6.7	78
279	Inorganic & organic materials for rechargeable Li batteries with multi-electron reaction. Science China Materials, 2014, 57, 42-58.	6.3	78
280	Efficiently Enhancing Oxygen Reduction Electrocatalytic Activity of MnO ₂ Using Facile Hydrogenation. Advanced Energy Materials, 2015, 5, 1400654.	19.5	78
281	Three-Dimensional Porous Cobalt Phosphide Nanocubes Encapsulated in a Graphene Aerogel as an Advanced Anode with High Coulombic Efficiency for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 5373-5379.	8.0	78
282	Demystifying the Lattice Oxygen Redox in Layered Oxide Cathode Materials of Lithium-Ion Batteries. ACS Nano, 2021, 15, 6061-6104.	14.6	77
283	Removal of nickel ions from wastewater by Mg(OH)2/MgO nanostructures embedded in Al2O3 membranes. Journal of Alloys and Compounds, 2006, 426, 281-285.	5.5	76
284	Preparation and gas storage of high surface area microporous carbon derived from biomass source cornstalks. Bioresource Technology, 2008, 99, 4803-4808.	9.6	76
285	Facile solution-controlled growth of CuInS2 thin films on FTO and TiO2/FTO glass substrates for photovoltaic application. Journal of Alloys and Compounds, 2009, 481, 786-791.	5.5	76
286	A density functional theory and time-dependent density functional theory investigation on the anchor comparison of triarylamine-based dyes. Journal of Chemical Physics, 2010, 132, 034305.	3.0	76
287	Facile solvothermal synthesis of CaMn2O4 nanorods for electrochemical oxygen reduction. Journal of Materials Chemistry, 2012, 22, 15812.	6.7	76
288	Sizeâ€Tunable Olive‣ike Anatase TiO ₂ Coated with Carbon as Superior Anode for Sodium″on Batteries. Small, 2016, 12, 5554-5563.	10.0	76

#	Article	IF	CITATIONS
289	Spinel oxide nanoparticles embedded in nitrogen-doped carbon nanofibers as a robust and self-standing bifunctional oxygen cathode for Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 24868-24876.	10.3	76
290	A Universal Compensation Strategy to Anchor Polar Organic Molecules in Bilayered Hydrated Vanadates for Promoting Aqueous Zincâ€Ion Storage. Advanced Materials, 2021, 33, e2102701.	21.0	76
291	A Symmetric Allâ€Organic Proton Battery in Mild Electrolyte. Angewandte Chemie - International Edition, 2022, 61, e202115180.	13.8	76
292	Synthesis, Characterization, and Electrochemical Application of Ca(OH)2-, Co(OH)2-, and Y(OH)3-Coated Ni(OH)2Tubes. Journal of Physical Chemistry B, 2005, 109, 14025-14032.	2.6	75
293	Something from nothing. Nature Chemistry, 2012, 4, 962-963.	13.6	75
294	CuCo nanoparticles supported on hierarchically porous carbon as catalysts for hydrolysis of ammonia borane. Journal of Alloys and Compounds, 2015, 651, 382-388.	5.5	75
295	Phosphorus Nanoparticles Encapsulated in Graphene Scrolls as a Highâ€Performance Anode for Sodiumâ€Ion Batteries. ChemElectroChem, 2015, 2, 1652-1655.	3.4	75
296	Cadmium(II)–Triazole Framework as a Luminescent Probe for Ca ²⁺ and Cyano Complexes. Chemistry - A European Journal, 2016, 22, 10459-10474.	3.3	75
297	A Coordination Chemistry Approach for Lithium-Ion Batteries: The Coexistence of Metal and Ligand Redox Activities in a One-Dimensional Metal–Organic Material. Inorganic Chemistry, 2016, 55, 4935-4940.	4.0	75
298	Ni nanoparticles supported on carbon as efficient catalysts for the hydrolysis of ammonia borane. Nano Research, 2014, 7, 774-781.	10.4	74
299	A solid lithium superionic conductor Li ₁₁ AlP ₂ S ₁₂ with a thio-LISICON analogous structure. Chemical Communications, 2016, 52, 6091-6094.	4.1	74
300	Surface plasmon mediates the visible light–responsive lithium–oxygen battery with Au nanoparticles on defective carbon nitride. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	74
301	Regulating Electrocatalytic Oxygen Reduction Activity of a Metal Coordination Polymer via d–π Conjugation. Angewandte Chemie - International Edition, 2021, 60, 16937-16941.	13.8	74
302	Intergrown Li2FeSiO4·LiFePO4–C nanocomposites as high-capacity cathode materials for lithium-ion batteries. Chemical Communications, 2013, 49, 3040.	4.1	73
303	A compatible anode/succinonitrile-based electrolyte interface in all-solid-state Na–CO ₂ batteries. Chemical Science, 2019, 10, 4306-4312.	7.4	72
304	Insights into the Ionic Conduction Mechanism of Quasiâ€Solid Polymer Electrolytes through Multispectral Characterization. Angewandte Chemie - International Edition, 2021, 60, 22672-22677.	13.8	72
305	Storage of hydrogen and lithium in inorganic nanotubes and nanowires. Journal of Materials Research, 2006, 21, 2744-2757.	2.6	71
306	Electroless-deposited Co–P catalysts for hydrogen generation from alkaline NaBH4 solution. International Journal of Hydrogen Energy, 2010, 35, 8363-8369.	7.1	71

#	Article	IF	CITATIONS
307	Porous 0.2Li ₂ MnO ₃ ·0.8LiNi _{0.5} Mn _{0.5} O ₂ nanorods as cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 1636-1640.	10.3	71
308	Chemical etching of manganese oxides for electrocatalytic oxygen reduction reaction. Chemical Communications, 2015, 51, 11599-11602.	4.1	71
309	Fabrication of Nickel Hydroxide Microtubes with Micro- and Nano-Scale Composite Structure and Improving Electrochemical Performance. Crystal Growth and Design, 2008, 8, 2157-2162.	3.0	70
310	MoS ₂ with an intercalation reaction as a long-life anode material for lithium ion batteries. Inorganic Chemistry Frontiers, 2016, 3, 532-535.	6.0	70
311	Preparation, characterization and catalytic NaBH4 hydrolysis of Co-B hollow spheres. Journal of Alloys and Compounds, 2009, 474, 584-589.	5.5	69
312	Micro-nano structured Ni-MOFs as high-performance cathode catalyst for rechargeable Li–O ₂ batteries. Nanoscale, 2015, 7, 11833-11840.	5.6	69
313	In Situ Polymerized Conjugated Poly(pyreneâ€4,5,9,10â€ŧetraone)/Carbon Nanotubes Composites for Highâ€Performance Cathode of Sodium Batteries. Advanced Energy Materials, 2021, 11, 2002917.	19.5	69
314	Insights into Redox Processes and Correlated Performance of Organic Carbonyl Electrode Materials in Rechargeable Batteries. Advanced Materials, 2022, 34, e2104150.	21.0	69
315	Understanding electrode materials of rechargeable lithium batteries via DFT calculations. Progress in Natural Science: Materials International, 2013, 23, 256-272.	4.4	68
316	Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three-dimensional graphene. Nano Research, 2015, 8, 184-192.	10.4	68
317	Quasi-Solid-State Dye-Sensitized Solar Cells with Polymer Gel Electrolyte and Triphenylamine-Based Organic Dyes. ACS Applied Materials & Interfaces, 2009, 1, 944-950.	8.0	67
318	Design and integration of flexible planar micro-supercapacitors. Nano Research, 2017, 10, 1524-1544.	10.4	67
319	Uniform MnO2 nanostructures supported on hierarchically porous carbon as efficient electrocatalysts for rechargeable Li-O2 batteries. Nano Research, 2015, 8, 156-164.	10.4	65
320	Metallic Aluminum Nanorods: Synthesis via Vapor-Deposition and Applications in Al/air Batteries. Chemistry of Materials, 2007, 19, 5812-5814.	6.7	64
321	Layered Na ₂ Ti ₃ O ₇ /MgNaTi ₃ O ₇ /Mg _{0.5} NaT Nanoribbons as High-Performance Anode of Rechargeable Mg-Ion Batteries. ACS Energy Letters, 2016, 1, 1165-1172.	i _{3<, 17.4}	/sub>O <sub: 64</sub:
322	Single Atoms on Graphene for Energy Storage and Conversion. Small Methods, 2019, 3, 1800443.	8.6	64
323	A Comparative Review of Electrolytes for Organicâ€Materialâ€Based Energyâ€Storage Devices Employing Solid Electrodes and Redox Fluids. ChemSusChem, 2020, 13, 2205-2219.	6.8	64
324	Mitigation of Jahn–Teller distortion and Na ⁺ /vacancy ordering in a distorted manganese oxide cathode material by Li substitution. Chemical Science, 2021, 12, 1062-1067.	7.4	64

#	Article	IF	CITATIONS
325	Low-temperature synthesis of titanium disulfide nanotubes. Chemical Communications, 2003, , 980-981.	4.1	63
326	Mn-doped atomic SnO ₂ layers for highly efficient CO ₂ electrochemical reduction. Journal of Materials Chemistry A, 2019, 7, 19651-19656.	10.3	63
327	Synthesis and application of Calix[6]quinone as a high-capacity organic cathode for plastic crystal electrolyte-based lithium-ion batteries. Energy Storage Materials, 2020, 26, 465-471.	18.0	63
328	Opportunities and challenges for aqueous metal-proton batteries. Matter, 2021, 4, 1252-1273.	10.0	63
329	Mechanistic investigation of ion migration in Na ₃ V ₂ (PO ₄) ₂ F ₃ hybrid-ion batteries. Physical Chemistry Chemical Physics, 2015, 17, 159-165.	2.8	62
330	Flexible wire-shaped lithium-sulfur batteries with fibrous cathodes assembled via capillary action. Nano Energy, 2017, 33, 325-333.	16.0	62
331	Hydrogen generation by hydrolysis of ammonia borane with a nanoporous cobalt–tungsten–boron–phosphorus catalyst supported on Ni foam. International Journal of Hydrogen Energy, 2011, 36, 1411-1417.	7.1	61
332	Rechargeable Aqueous Polymer-Air Batteries Based on Polyanthraquinone Anode. CheM, 2019, 5, 2159-2170.	11.7	61
333	Highâ€Energyâ€Density Quinoneâ€Based Electrodes with [Al(OTF)] ²⁺ Storage Mechanism for Rechargeable Aqueous Aluminum Batteries. Advanced Functional Materials, 2021, 31, 2102063.	14.9	61
334	Photoelectrochemistry of oxygen in rechargeable Li–O ₂ batteries. Chemical Society Reviews, 2022, 51, 1846-1860.	38.1	61
335	Novel quasi-solid electrolyte for dye-sensitized solar cells. Journal of Power Sources, 2007, 165, 911-915.	7.8	60
336	Dye-sensitized solar cells made from BaTiO3-coated TiO2 nanoporous electrodes. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 197, 260-265.	3.9	60
337	Patterning Islandlike MnO ₂ Arrays by Breath-Figure Templates for Flexible Transparent Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 27001-27008.	8.0	60
338	Is the Suzuki–Miyaura Cross-Coupling Reaction in the Presence of Pd Nanoparticles Heterogeneously or Homogeneously Catalyzed? An Interfacial Surface-Enhanced Raman Spectroscopy Study. Journal of Physical Chemistry Letters, 2019, 10, 1286-1291.	4.6	60
339	Recent advances in Ni-rich layered oxide particle materials for lithium-ion batteries. Particuology, 2020, 53, 1-11.	3.6	60
340	Electrochemical Deposition of Ni(OH)2 and Fe-Doped Ni(OH)2 Tubes. European Journal of Inorganic Chemistry, 2005, 2005, 4035-4039.	2.0	59
341	The structure–electrochemical property relationship of quinone electrodes for lithium-ion batteries. Physical Chemistry Chemical Physics, 2018, 20, 13478-13484.	2.8	59
342	A Co ₃ O ₄ @MnO ₂ /Ni nanocomposite as a carbon- and binder-free cathode for rechargeable Li–O ₂ batteries. Inorganic Chemistry Frontiers, 2016, 3, 866-871.	6.0	58

#	Article	IF	CITATIONS
343	Exploring the Interfacial Chemistry between Zinc Anodes and Aqueous Electrolytes via an In Situ Visualized Characterization System. ACS Applied Materials & Interfaces, 2020, 12, 55476-55482.	8.0	58
344	An extended carbonyl-rich conjugated polymer cathode for high-capacity lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 2700-2705.	10.3	58
345	Nanocomposite of Fe ₂ 0 ₃ @C@MnO ₂ as an Efficient Cathode Catalyst for Rechargeable Lithiumâ^'Oxygen Batteries. Small, 2015, 11, 5545-5550.	10.0	57
346	Designing Anionâ€Type Waterâ€Free Zn ²⁺ Solvation Structure for Robust Zn Metal Anode. Angewandte Chemie, 2021, 133, 23545-23552.	2.0	57
347	Studies on the Hydrogen Storage of Magnesium Nanowires by Density Functional Theory. Journal of Physical Chemistry C, 2009, 113, 3007-3013.	3.1	55
348	Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries. Journal of Power Sources, 2014, 248, 1141-1148.	7.8	55
349	Nanostructured NiMoO4 as active electrocatalyst for oxygen evolution. Chinese Chemical Letters, 2019, 30, 319-323.	9.0	55
350	Double shelled hollow SnO ₂ /polymer microsphere as a high-capacity anode material for superior reversible lithium ion storage. Journal of Materials Chemistry A, 2015, 3, 1068-1076.	10.3	54
351	Introducing ion-transport-regulating nanochannels to lithium-sulfur batteries. Nano Energy, 2017, 33, 205-212.	16.0	54
352	A novel PMA/PEG-based composite polymer electrolyte for all-solid-state sodium ion batteries. Nano Research, 2018, 11, 6244-6251.	10.4	54
353	LiNi _{0.90} Co _{0.07} Mg _{0.03} O ₂ cathode materials with Mg-concentration gradient for rechargeable lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20958-20964.	10.3	54
354	Oxocarbon Salts for Fast Rechargeable Batteries. Angewandte Chemie, 2016, 128, 12716-12720.	2.0	53
355	Synthesis of size-controlled CoMn2O4 quantum dots supported on carbon nanotubes for electrocatalytic oxygen reduction/evolution. Nano Research, 2017, 10, 3836-3847.	10.4	53
356	Facile synthesis of hierarchically porous carbons and their application as a catalyst support for methanol oxidation. Journal of Materials Chemistry, 2009, 19, 4108.	6.7	52
357	All-Solid-State Dye-Sensitized Solar Cells with Alkyloxy-Imidazolium Iodide Ionic Polymer/SiO ₂ Nanocomposite Electrolyte and Triphenylamine-Based Organic Dyes. Journal of Physical Chemistry C, 2010, 114, 6814-6821.	3.1	52
358	Flexible and Free-Standing Organic/Carbon Nanotubes Hybrid Films as Cathode for Rechargeable Lithium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 14498-14506.	3.1	52
359	Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries. Nano Research, 2017, 10, 4245-4255.	10.4	52
360	A phenazine anode for high-performance aqueous rechargeable batteries in a wide temperature range. Nano Research, 2020, 13, 676-683.	10.4	52

#	Article	IF	CITATIONS
361	Molecularly Compensated Preâ€Metallation Strategy for Metalâ€Ion Batteries and Capacitors. Angewandte Chemie - International Edition, 2021, 60, 17070-17079.	13.8	52
362	Low-temperature hydrothermal synthesis and structure control of nano-sized CePO4. CrystEngComm, 2009, 11, 1630.	2.6	51
363	Functional porous carbon-based composite electrode materials for lithium secondary batteries. Journal of Energy Chemistry, 2013, 22, 214-225.	12.9	51
364	Cyclohexanehexone with Ultrahigh Capacity as Cathode Materials for Lithiumâ€lon Batteries. Angewandte Chemie, 2019, 131, 7094-7098.	2.0	51
365	Freestanding reduced graphene oxide/sodium vanadate composite films for flexible aqueous zinc-ion batteries. Science China Chemistry, 2019, 62, 609-615.	8.2	51
366	A 3D hierarchical porous Co ₃ O ₄ nanotube network as an efficient cathode for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 14673-14681.	10.3	50
367	Size-controlled MoS2 nanodots supported on reduced graphene oxide for hydrogen evolution reaction and sodium-ion batteries. Nano Research, 2017, 10, 2210-2222.	10.4	50
368	All-Climate Aqueous Dual-Ion Hybrid Battery with Ultrahigh Rate and Ultralong Life Performance. ACS Applied Energy Materials, 2019, 2, 4370-4378.	5.1	50
369	Electrochemical Lithium Intercalation/Deintercalation of Single-Crystalline V[sub 2]O[sub 5] Nanowires. Journal of the Electrochemical Society, 2007, 154, A39.	2.9	49
370	Controlled synthesis of porous spinel cobaltite core-shell microspheres as high-performance catalysts for rechargeable Li–O2 batteries. Nano Energy, 2015, 13, 718-726.	16.0	48
371	Growth of Large-Area Aligned Molybdenum Nanowires by High Temperature Chemical Vapor Deposition:Â Synthesis, Growth Mechanism, and Device Application. Journal of Physical Chemistry B, 2006, 110, 10296-10302.	2.6	47
372	Synthesis, characterization and electrochemical properties of aluminum-substituted alpha-Ni(OH)2 hollow spheres. Journal of Alloys and Compounds, 2008, 456, 339-343.	5.5	47
373	A thermally and electrochemically stable organic hole-transporting material with an adamantane central core and triarylamine moieties. Synthetic Metals, 2012, 162, 490-496.	3.9	47
374	Aqueous Batteries Operated at â^50 °C. Angewandte Chemie, 2019, 131, 17150-17155.	2.0	47
375	High performance of low-temperature electrolyte for lithium-ion batteries using mixed additives. Chemical Engineering Journal, 2021, 418, 129400.	12.7	47
376	Shape-controlled synthesis and optical characterization of chalcopyrite CuInS2 microstructures. Journal of Crystal Growth, 2007, 305, 99-103.	1.5	46
377	Nanoporous Ni-based catalysts for hydrogen generation fromÂhydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2013, 38, 5768-5774.	7.1	46
378	Review of Electrolytes in Nonaqueous Lithium–Oxygen Batteries. Advanced Sustainable Systems, 2018, 2, 1700183.	5.3	46

#	Article	IF	CITATIONS
379	Fabrication of Ru and Ru-Based Functionalized Nanotubes. Journal of the American Chemical Society, 2004, 126, 3060-3061.	13.7	45
380	Improving the performance of PtRu/C catalysts for methanol oxidation by sensitization and activation treatment. Journal of Power Sources, 2007, 166, 331-336.	7.8	45
381	Influence of acceptor moiety in triphenylamine-based dyes on the properties of dye-sensitized solar cells. Journal of Power Sources, 2008, 183, 792-798.	7.8	45
382	Ammonia borane as an efficient and lightweight hydrogen storage medium. Energy and Environmental Science, 2008, , .	30.8	45
383	A high-energy-density sodium-ion full battery based on tin anode. Science China Chemistry, 2019, 62, 616-621.	8.2	45
384	Current state-of-the-art characterization techniques for probing the layered oxide cathode materials of sodium-ion batteries. Energy Storage Materials, 2021, 35, 400-430.	18.0	45
385	Solid Solution Metal Chalcogenides for Sodiumâ€lon Batteries: The Recent Advances as Anodes. Small, 2021, 17, e2101058.	10.0	45
386	Phthalocyanine-based covalent organic frameworks as novel anode materials for high-performance lithium-ion/sodium-ion batteries. Chemical Engineering Journal, 2021, 425, 131630.	12.7	45
387	Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries. Journal of Alloys and Compounds, 2011, 509, 2919-2923.	5.5	44
388	High-strength graphene composite films by molecular level couplings for flexible supercapacitors with high volumetric capacitance. Journal of Materials Chemistry A, 2017, 5, 15008-15016.	10.3	44
389	Rapid low-temperature synthesis of perovskite/carbon nanocomposites as superior electrocatalysts for oxygen reduction in Zn-air batteries. Nano Research, 2018, 11, 3282-3293.	10.4	44
390	Photoâ€energy Conversion and Storage in an Aprotic Liâ€O ₂ Battery. Angewandte Chemie, 2019, 131, 19197-19202.	2.0	44
391	Spinel/Lithiumâ€Rich Manganese Oxide Hybrid Nanofibers as Cathode Materials for Rechargeable Lithiumâ€ion Batteries. Small Methods, 2019, 3, 1900350.	8.6	44
392	Synthesis and Characterization of WS2Nanotubes. Chemistry of Materials, 2003, 15, 1012-1019.	6.7	43
393	Rechargeable Roomâ€Temperature Na–CO ₂ Batteries. Angewandte Chemie, 2016, 128, 6592-6596.	2.0	43
394	Enhanced Conductivity and Structure Stability of Ti ⁴⁺ Doped Li ₃ VO ₄ as Anodes for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 26196-26201.	3.1	43
395	Developing better ester- and ether-based electrolytes for potassium-ion batteries. Chemical Science, 2021, 12, 2345-2356.	7.4	43
396	Low-Pt-loading acetylene-black cathode for high-efficient dye-sensitized solar cells. Journal of Power Sources, 2008, 177, 631-636.	7.8	42

#	Article	IF	CITATIONS
397	Ni1â^'xPtx (x=0–0.08) films as the photocathode of dye-sensitized solar cells with high efficiency. Nano Research, 2009, 2, 484-492.	10.4	42
398	3D Cu-doped CoS porous nanosheet films as superior counterelectrodes for quantum dot-sensitized solar cells. Nano Energy, 2015, 16, 163-172.	16.0	42
399	Transition-Metal-Triggered High-Efficiency Lithium Ion Storage via Coordination Interactions with Redox-Active Croconate in One-Dimensional Metal–Organic Anode Materials. ACS Applied Materials & Interfaces, 2018, 10, 6398-6406.	8.0	42
400	Flexible and Tailorable Naâ^'CO ₂ Batteries Based on an Allâ€Solidâ€State Polymer Electrolyte. ChemElectroChem, 2018, 5, 3628-3632.	3.4	42
401	Recent Advances in Isolated Single-Atom Catalysts for Zinc Air Batteries: A Focus Review. Nanomaterials, 2019, 9, 1402.	4.1	42
402	Building Homogenous Li ₂ TiO ₃ Coating Layer on Primary Particles to Stabilize Liâ€Rich Mnâ€Based Cathode Materials. Small, 2022, 18, e2106337.	10.0	42
403	Li2MnSiO4@C nanocomposite as a high-capacity cathode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 12650.	10.3	41
404	A Consecutive Spray Printing Strategy to Construct and Integrate Diverse Supercapacitors on Various Substrates. ACS Applied Materials & Interfaces, 2017, 9, 28612-28619.	8.0	41
405	High-Performance Aqueous Sodium-Ion Batteries with Hydrogel Electrolyte and Alloxazine/CMK-3 Anode. ACS Sustainable Chemistry and Engineering, 2018, 6, 7761-7768.	6.7	41
406	Synthesis, Characterization, and Gas-Sensor Application of WO[sub 3] Nanocuboids. Journal of the Electrochemical Society, 2006, 153, H133.	2.9	40
407	Decreasing the thermal dehydrogenation temperature of methylamine borane (MeAB) by mixing with poly(methyl acrylate) (PMA). International Journal of Hydrogen Energy, 2012, 37, 7638-7644.	7.1	40
408	MnOOH nanorods as high-performance anodes for sodium ion batteries. Chemical Communications, 2017, 53, 2435-2438.	4.1	40
409	Achieving a stable Na metal anode with a 3D carbon fibre scaffold. Inorganic Chemistry Frontiers, 2018, 5, 864-869.	6.0	40
410	Charge Storage Mechanism and Structural Evolution of Viologen Crystals as the Cathode of Lithium Batteries. Angewandte Chemie - International Edition, 2020, 59, 11533-11539.	13.8	40
411	A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries. Science China Chemistry, 2021, 64, 385-402.	8.2	40
412	Triphenylamine-based organic dye containing the diphenylvinyl and rhodanine-3-acetic acid moieties for efficient dye-sensitized solar cells. Journal of Power Sources, 2009, 187, 620-626.	7.8	39
413	Unique two-fold interpenetration of 3D microporous 3d–4f heterometal–organic frameworks (HMOF) based on a rigid ligand. Dalton Transactions, 2009, , 7765.	3.3	39
414	Carbon-supported Ni3B nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2014, 39, 6987-6994.	7.1	39

#	Article	IF	CITATIONS
415	Urchinâ€Like Fe ₃ Se ₄ Hierarchitectures: A Novel Pseudocapacitive Sodiumâ€lon Storage Anode with Prominent Rate and Cycling Properties. Small, 2020, 16, e2000504.	10.0	39
416	A readily-prepared, convergent, oxygen reduction electrocatalyst. Chemical Communications, 2007, , 3353.	4.1	38
417	Amorphous Zr(OH) 4 coated LiNi 0.915 Co 0.075 Al 0.01 O 2 cathode material with enhanced electrochemical performance for lithium ion batteries. Journal of Energy Chemistry, 2017, 26, 481-487.	12.9	38
418	Lowâ€Cost K ₄ Fe(CN) ₆ as a Highâ€Voltage Cathode for Potassiumâ€Ion Batteries. ChemSusChem, 2018, 11, 1285-1289.	6.8	38
419	A Microporous Covalent–Organic Framework with Abundant Accessible Carbonyl Groups for Lithiumâ€ion Batteries. Angewandte Chemie, 2018, 130, 9587-9590.	2.0	38
420	Unraveling the Formation of Amorphous MoS ₂ Nanograins during the Electrochemical Delithiation Process. Advanced Functional Materials, 2019, 29, 1904843.	14.9	38
421	Silica hollow nanospheres as new nanoscaffold materials to enhance hydrogen releasing from ammonia borane. Physical Chemistry Chemical Physics, 2011, 13, 18592.	2.8	37
422	Controllable synthesis and characterization of porous FeVO ₄ nanorods and nanoparticles. CrystEngComm, 2011, 13, 897-901.	2.6	37
423	Spinel cobalt–manganese oxide supported on non-oxidized carbon nanotubes as a highly efficient oxygen reduction/evolution electrocatalyst. Inorganic Chemistry Frontiers, 2017, 4, 1628-1633.	6.0	37
424	Pore size effect of graphyne supports on CO ₂ electrocatalytic activity of Cu single atoms. Physical Chemistry Chemical Physics, 2020, 22, 1181-1186.	2.8	37
425	Tuning Interphase Chemistry to Stabilize Highâ€Voltage LiCoO ₂ Cathode Material via Spinel Coating. Angewandte Chemie - International Edition, 2022, 61, .	13.8	37
426	Synthesis, characterization and electrochemical properties of a compact titanium dioxide layer. Solid State Sciences, 2009, 11, 433-438.	3.2	36
427	A Core-Shell Si@NiSi2/Ni/C Nanocomposite as an Anode Material for Lithium-ion Batteries. Electrochimica Acta, 2016, 192, 303-309.	5.2	36
428	An Insoluble Benzoquinoneâ€Based Organic Cathode for Use in Rechargeable Lithiumâ€Ion Batteries. Angewandte Chemie, 2017, 129, 12735-12739.	2.0	36
429	A novel aqueous sodium–manganese battery system for energy storage. Journal of Materials Chemistry A, 2019, 7, 8122-8128.	10.3	36
430	Electrodeposition Accelerates Metal-Based Batteries. Joule, 2020, 4, 10-11.	24.0	36
431	Atomic-Level Modulation-Induced Electron Redistribution in Co Coordination Polymers Elucidates the Oxygen Reduction Mechanism. ACS Catalysis, 2022, 12, 7531-7540.	11.2	36
432	Solvothermal synthesis and optical characterization of chalcopyrite CuInSe2 microspheres. Materials Chemistry and Physics, 2007, 106, 296-300.	4.0	35

#	Article	IF	CITATIONS
433	Magnetic Ni and Ni/Pt hollow nanospheres and their catalytic activities for hydrolysis of ammonia borane. Journal of Materials Chemistry A, 2014, 2, 18171-18176.	10.3	35
434	Carboxyl-conjugated phthalocyanines used as novel electrode materials with high specific capacity for lithium-ion batteries. Journal of Solid State Electrochemistry, 2016, 20, 1285-1294.	2.5	35
435	Molecular Design Strategy for Highâ€Redoxâ€Potential and Poorly Soluble nâ€Type Phenazine Derivatives as Cathode Materials for Lithium Batteries. ChemSusChem, 2020, 13, 2337-2344.	6.8	35
436	Bifunctional Effects of Cation Additive on Naâ€O ₂ Batteries. Angewandte Chemie - International Edition, 2021, 60, 3205-3211.	13.8	35
437	An Ionic Liquid Electrolyte with Enhanced Li ⁺ Transport Ability Enables Stable Li Deposition for Highâ€Performance Liâ€O ₂ Batteries. Angewandte Chemie - International Edition, 2021, 60, 25973-25980.	13.8	35
438	In Situ Surface Selfâ€Reconstruction Strategies in Liâ€Rich Mnâ€Based Layered Cathodes for Energyâ€Dense Liâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	14.9	35
439	An MXeneâ€Based Metal Anode with Stepped Sodiophilic Gradient Structure Enables a Large Current Density for Rechargeable Na–O ₂ Batteries. Advanced Materials, 2022, 34, e2106565.	21.0	35
440	Porous Acetylene-black Spheres as the Cathode Materials of Dye-sensitized Solar Cells. Chemistry Letters, 2006, 35, 1266-1267.	1.3	34
441	Preparation and characterization of nanocrystalline Mg2FeH6. Journal of Alloys and Compounds, 2010, 508, 554-558.	5.5	34
442	The anion effect on the oxygen reduction of MnX (X = O, S, and Se) catalysts. Journal of Materials Chemistry A, 2015, 3, 3425-3431.	10.3	34
443	Nafion/Titanium Dioxideâ€Coated Lithium Anode for Stable Lithium–Sulfur Batteries. Chemistry - an Asian Journal, 2018, 13, 1379-1385.	3.3	34
444	Polyacrylonitrile Hard Carbon as Anode of High Rate Capability for Lithium Ion Batteries. Frontiers in Energy Research, 2020, 8, .	2.3	34
445	Y(OH)3-coated Ni(OH)2 tube as the positive-electrode materials of alkaline rechargeable batteries. Journal of Power Sources, 2005, 150, 255-260.	7.8	33
446	A quantum chemical study on magnesium(Mg)/magnesium–hydrogen(Mg–H) nanowires. Journal of Alloys and Compounds, 2009, 484, 308-313.	5.5	33
447	Nanofibrous Co ₃ O ₄ /PPy Hybrid with Synergistic Effect as Bifunctional Catalyst for Lithiumâ€Oxygen Batteries. Advanced Materials Interfaces, 2016, 3, 1600030.	3.7	33
448	Photoinduced Oxygen Reduction Reaction Boosts the Output Voltage of a Zinc–Air Battery. Angewandte Chemie, 2019, 131, 12590-12594.	2.0	33
449	Reversible Oxygen Redox Chemistry in Aqueous Zincâ€lon Batteries. Angewandte Chemie, 2019, 131, 7136-7141.	2.0	33
450	Gradient doping Mg and Al to stabilize Ni-rich cathode materials for rechargeable lithium-ion batteries. Journal of Power Sources, 2022, 535, 231445.	7.8	33

#	Article	IF	CITATIONS
451	A universal strategy for high-voltage aqueous batteries <i>via</i> lone pair electrons as the hydrogen bond-breaker. Energy and Environmental Science, 2022, 15, 2653-2663.	30.8	33
452	Porphyrinâ€Based Symmetric Redoxâ€Flow Batteries towards Coldâ€Climate Energy Storage. Angewandte Chemie, 2018, 130, 3212-3216.	2.0	32
453	Star Brush Block Copolymer Electrolytes with High Ambient-Temperature Ionic Conductivity for Quasi-Solid-State Lithium Batteries. , 2019, 1, 606-612.		32
454	In situ Synthesis of a Bismuth Layer on a Sodium Metal Anode for Fast Interfacial Transport in Sodiumâ€Oxygen Batteries. Batteries and Supercaps, 2019, 2, 663-667.	4.7	32
455	Rechargeable Na-CO ₂ Batteries Starting from Cathode of Na ₂ CO ₃ and Carbon Nanotubes. Research, 2018, 2018, 6914626.	5.7	32
456	Organic/Inorganic Hybrid Fibers: Controllable Architectures for Electrochemical Energy Applications. Advanced Science, 2021, 8, e2102859.	11.2	32
457	Manipulating Stable Layered P2â€Type Cathode via a Coâ€Substitution Strategy for High Performance Sodium Ion Batteries. Small Methods, 2022, 6, e2101292.	8.6	32
458	Rational design and synthesis of two-dimensional conjugated metal-organic polymers for electrocatalysis applications. CheM, 2022, 8, 1822-1854.	11.7	32
459	Ordered spinel LiNi0.5Mn1.5O4 nanorods for high-rate lithium-ion batteries. Journal of Electroanalytical Chemistry, 2013, 688, 113-117.	3.8	31
460	Super P Carbon Modified Lithium Anode for Highâ€Performance Liâ^'O ₂ Batteries. ChemElectroChem, 2018, 5, 1702-1707.	3.4	31
461	Safety-reinforced rechargeable Li-CO2 battery based on a composite solid state electrolyte. Nano Research, 2019, 12, 2543-2548.	10.4	31
462	Porous LiFePO4/NiP Composite nanospheres as the cathode materials in rechargeable lithium-ion batteries. Nano Research, 2008, 1, 242.	10.4	30
463	Magnesium microspheres and nanospheres: Morphology-controlled synthesis and application in Mg/MnO2 batteries. Nano Research, 2009, 2, 713-721.	10.4	30
464	The enhanced hydrogen storage of micro-nanostructured hybrids of Mg(BH ₄) ₂ –carbon nanotubes. Nanoscale, 2015, 7, 18305-18311.	5.6	30
465	Polypyrrole-coated hierarchical porous composites nanoarchitectures for advanced solid-state flexible hybrid devices. Nano Energy, 2016, 19, 307-317.	16.0	30
466	A stable 2D nano-columnar sandwich layered phthalocyanine negative electrode for lithium-ion batteries. Journal of Power Sources, 2019, 426, 169-177.	7.8	30
467	Photoâ€excited Oxygen Reduction and Oxygen Evolution Reactions Enable a Highâ€Performance Zn–Air Battery. Angewandte Chemie, 2020, 132, 18297-18301.	2.0	30
468	Syntheses, challenges and modifications of single-crystal cathodes for lithium-ion battery. Journal of Energy Chemistry, 2021, 63, 217-229.	12.9	30

#	Article	IF	CITATIONS
469	Triphenylamine-Based Ionic Dyes with Simple Structures: Broad Photoresponse and Limitations on Open-Circuit Voltage in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 15842-15848.	3.1	29
470	A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a Highâ€Performance Rechargeable Lithiumâ€lon Battery. Angewandte Chemie, 2016, 128, 6538-6542.	2.0	29
471	LiAlH ₄ supported on TiO ₂ /hierarchically porous carbon nanocomposites with enhanced hydrogen storage properties. Inorganic Chemistry Frontiers, 2016, 3, 1536-1542.	6.0	29
472	Flexible Li O ₂ Batteries with Liquidâ€Free Electrolyte. Angewandte Chemie, 2017, 129, 5879-5883.	2.0	29
473	Spent alkaline battery-derived manganese oxides as efficient oxygen electrocatalysts for Zn–air batteries. Inorganic Chemistry Frontiers, 2018, 5, 2167-2173.	6.0	29
474	Orthoquinone–Based Covalent Organic Frameworks with Ordered Channel Structures for Ultrahigh Performance Aqueous Zinc–Organic Batteries. Angewandte Chemie, 2022, 134, .	2.0	29
475	A Symmetric Allâ€Organic Proton Battery in Mild Electrolyte. Angewandte Chemie, 2022, 134, .	2.0	29
476	A porous 3d-4f heterometallic metal–organic framework for hydrogen storage. International Journal of Hydrogen Energy, 2010, 35, 8166-8170.	7.1	28
477	Stirring-assisted hydrothermal synthesis of ultralong α-MnO ₂ nanowires for oxygen reduction reaction. Inorganic Chemistry Frontiers, 2016, 3, 928-933.	6.0	28
478	Hot-Injection Synthesis of PtCu ₃ Concave Nanocubes with High-Index Facets for Electrocatalytic Oxidation of Methanol and Formic Acid. ACS Applied Energy Materials, 2020, 3, 1010-1016.	5.1	28
479	Ultrasmall SnS nanoparticles embedded in carbon spheres: a high-performance anode material for sodium ion batteries. RSC Advances, 2016, 6, 95805-95811.	3.6	27
480	Facile synthesis of amorphous MoS _x –Fe anchored on Zr-MOFs towards efficient and stable electrocatalytic hydrogen evolution. Chemical Communications, 2020, 56, 2763-2766.	4.1	27
481	High-Pressure Synthesis of Amorphous MgNi1.02H2.2. Journal of the American Chemical Society, 2001, 123, 6193-6194.	13.7	26
482	In Situ Atomic Force Microscopic Studies of Single Tin Nanoparticle: Sodiation and Desodiation in Liquid Electrolyte. ACS Applied Materials & Interfaces, 2017, 9, 28620-28626.	8.0	26
483	Self-assembly synthesis of solid polymer electrolyte with carbonate terminated poly(ethylene glycol) matrix and its application for solid state lithium battery. Journal of Energy Chemistry, 2019, 38, 55-59.	12.9	26
484	Structure–Performance Relationships of Covalent Organic Framework Electrode Materials in Metal-Ion Batteries. Journal of Physical Chemistry Letters, 2021, 12, 8061-8071.	4.6	26
485	High-performance of sodium carboxylate-derived materials for electrochemical energy storage. Science China Materials, 2018, 61, 707-718.	6.3	25
486	Room-Temperature Flexible Quasi-Solid-State Rechargeable Na–O ₂ Batteries. ACS Central Science, 2020, 6, 1955-1963.	11.3	25

#	Article	IF	CITATIONS
487	High-surface-area microporous carbon as the efficient photocathode of dye-sensitized solar cells. Solid State Sciences, 2009, 11, 2051-2055.	3.2	24
488	Microcrystalline copper foil as a high performance collector for lithium-ion batteries. Journal of Power Sources, 2019, 438, 226973.	7.8	24
489	Surface modification of Li-rich manganese-based cathode materials by chemical etching. Inorganic Chemistry Frontiers, 2019, 6, 1694-1700.	6.0	24
490	Butyl acrylate (BA) and ethylene carbonate (EC) electrolyte additives for low-temperature performance of lithium ion batteries. Journal of Power Sources, 2020, 476, 228697.	7.8	24
491	Design of two 3D homochiral Co(II) metal–organic open frameworks by layered-pillar strategy: structure and properties. CrystEngComm, 2008, 10, 963.	2.6	23
492	Synthesis and electrochemical properties of porous LiV3O8 as cathode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2011, 509, 6030-6035.	5.5	23
493	Rechargeable K O ₂ Batteries with a KSn Anode and a Carboxyl ontaining Carbon Nanotube Cathode Catalyst. Angewandte Chemie - International Edition, 2021, 60, 9540-9545.	13.8	23
494	Two-Phase Transition Induced Amorphous Metal Phosphides Enabling Rapid, Reversible Alkali-Metal Ion Storage. ACS Nano, 2021, 15, 13486-13494.	14.6	23
495	Quinone Electrodes for Alkali–Acid Hybrid Batteries. Journal of the American Chemical Society, 2022, 144, 8066-8072.	13.7	23
496	Hydriding and Dehydriding Properties of Amorphous Magnesiumâ^'Nickel Films Prepared by a Sputtering Method. Chemistry of Materials, 2002, 14, 2834-2836.	6.7	22
497	Synthesis of TiSe2 Nanotubes/Nanowires. Advanced Materials, 2003, 15, 1379-1382.	21.0	22
498	Lithium Intercalation in Open-Ended TiS2 Nanotubes. Angewandte Chemie, 2003, 115, 2197-2201.	2.0	22
499	Flexible ultrathin all-solid-state supercapacitors. Rare Metals, 2018, 37, 536-542.	7.1	22
500	Core-shell structured 1,4-benzoquinone@TiO2 cathode for lithium batteries. Journal of Energy Chemistry, 2018, 27, 1644-1650.	12.9	22
501	Porous diatomite-mixed 1,4,5,8-NTCDA nanowires as high-performance electrode materials for lithium-ion batteries. Nanoscale, 2019, 11, 15881-15891.	5.6	22
502	Synthesis and Application of La[sub 0.59]Ca[sub 0.41]CoO[sub 3] Nanotubes. Journal of the Electrochemical Society, 2005, 152, A2069.	2.9	21
503	Electrochemical properties of carbonyl substituted phthalocyanines as electrode materials for lithium-ion batteries. RSC Advances, 2016, 6, 52850-52853.	3.6	21
504	All-solid-state supercapacitors with superior compressive strength and volumetric capacitance. Energy Storage Materials, 2018, 13, 119-126.	18.0	21

#	Article	IF	CITATIONS
505	An Allâ€Freezeâ€Casting Strategy to Design Typographical Supercapacitors with Integrated Architectures. Small, 2018, 14, e1800280.	10.0	21
506	ZnS micro-spheres and flowers: Chemically controlled synthesis and template use in fabricating MS(shell)/ZnS(core) and MS (M=Pb, Cu) hollow microspheres. Journal of Alloys and Compounds, 2007, 441, 337-343.	5.5	20
507	Studies on the vapour-transport synthesis and electrochemical properties of zinc micro-, meso- and nanoscale structures. Journal of Materials Chemistry, 2007, 17, 684-691.	6.7	20
508	Si–Y multi-layer thin films as anode materials of high-capacity lithium-ion batteries. Journal of Power Sources, 2012, 217, 102-107.	7.8	20
509	A Potential Regularity for Enhancing the Hydrogenation Properties of Ni ₂ P. Journal of Physical Chemistry C, 2015, 119, 2557-2565.	3.1	20
510	Enhancing the Lithium Storage Capacities of Coordination Compounds for Advanced Lithium-Ion Battery Anodes via a Coordination Chemistry Approach. Inorganic Chemistry, 2018, 57, 10640-10648.	4.0	20
511	Selective hydrogenation of CO ₂ over a Ce promoted Cu-based catalyst confined by SBA-15. Inorganic Chemistry Frontiers, 2019, 6, 1799-1812.	6.0	20
512	Improving metallic lithium anode with NaPF6 additive in LiPF6-carbonate electrolyte. Journal of Energy Chemistry, 2020, 42, 1-4.	12.9	20
513	UV-Cured Interpenetrating Networks of Single-ion Conducting Polymer Electrolytes for Rechargeable Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 12532-12539.	5.1	20
514	High-performance all-solid-state electrolyte for sodium batteries enabled by the interaction between the anion in salt and Na ₃ SbS ₄ . Chemical Science, 2022, 13, 3416-3423.	7.4	20
515	Hydrothermal synthesis of spindle-like Li2FeSiO4-C composite as cathode materials for lithium-ion batteries. Journal of Energy Chemistry, 2014, 23, 274-281.	12.9	19
516	Reaction Mechanism of Ethanol on Model Cobalt Catalysts: DFT Calculations. Journal of Physical Chemistry C, 2016, 120, 14198-14208.	3.1	19
517	Preparation and characterization of LiNi 0.8 Co 0.15 Al 0.05 O 2 with high cycling stability by using AlO 2 - as Al source. Ceramics International, 2017, 43, 3885-3892.	4.8	19
518	Biaxial strained dual-phase palladium-copper bimetal boosts formic acid electrooxidation. Nano Research, 2022, 15, 280-284.	10.4	19
519	Novel Magnesium-Manganese Hydrides Prepared by the Gigapascal High Pressure Technique. Materials Transactions, 2002, 43, 1124-1126.	1.2	18
520	Ab initio investigation of structures, electronic and thermodynamic properties for Li–Mg–H ternary system. Journal of Alloys and Compounds, 2011, 509, 8228-8234.	5.5	18
521	A Twoâ€Đimensional Metal–Organic Polymer Enabled by Robust Nickel–Nitrogen and Hydrogen Bonds for Exceptional Sodiumâ€ion Storage. Angewandte Chemie, 2020, 132, 22310-22315.	2.0	18
522	Facile-Processed Nanocarbon-Promoted Sulfur Cathode for Highly Stable Sodium-Sulfur Batteries. Cell Reports Physical Science, 2020, 1, 100015.	5.6	18

#	Article	IF	CITATIONS
523	Sn–Al core–shell nanocomposite as thin film anode for lithium-ion batteries. Journal of Alloys and Compounds, 2015, 644, 742-749.	5.5	17
524	Tetra-β-nitro-substituted phthalocyanines: a new organic electrode material for lithium batteries. Journal of Solid State Electrochemistry, 2017, 21, 947-954.	2.5	17
525	Understanding the Ion-Sorption Dynamics in Functionalized Porous Carbons for Enhanced Capacitive Energy Storage. ACS Applied Materials & amp; Interfaces, 2020, 12, 2773-2782.	8.0	17
526	MoS ₂ -modified graphite felt as a high performance electrode material for zinc–polyiodide redox flow batteries. Inorganic Chemistry Frontiers, 2019, 6, 731-735.	6.0	17
527	Promoted hydrogen release from ammonia borane with mannitolvia a solid-state reaction route. Dalton Transactions, 2012, 41, 871-875.	3.3	16
528	Intergrown LiNi0.5Mn1.5O4·LiNi1/3Co1/3Mn1/3O2 composite nanorods as high-energy density cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 13742.	10.3	16
529	A Lowâ€6train Potassiumâ€Rich Prussian Blue Analogue Cathode for High Power Potassiumâ€ion Batteries. Angewandte Chemie, 2021, 133, 13160-13166.	2.0	16
530	An inexpensive and efficient pyridine-based additive for the electrolyte of dye-sensitized solar cells. Journal of Power Sources, 2009, 193, 878-884.	7.8	15
531	Preparation of Li4Ti5O12 submicrospheres and their application as anode materials of rechargeable lithium-ion batteries. Science China Chemistry, 2011, 54, 936-940.	8.2	15
532	Porous MnO2 hollow cubes as new nanoscaffold materials for the dehydrogenation promotion of ammonia-borane (AB). Microporous and Mesoporous Materials, 2012, 161, 40-47.	4.4	15
533	Synergism induced exceptional capacity and complete reversibility in Mg–Y thin films: enabling next generation metal hydride electrodes. Energy and Environmental Science, 2018, 11, 1563-1570.	30.8	15
534	Dynamic processes in Si and Si/C anodes in lithium-ion batteries during cycling. Journal of Electroanalytical Chemistry, 2019, 839, 187-194.	3.8	15
535	MnO ₂ Nanosheets on a Carbon Nanofiber Freestanding Film by Electrospinning and <i>In Situ</i> Spraying for Lithium and Sodium Storage. ACS Applied Energy Materials, 2022, 5, 3587-3594.	5.1	15
536	Ï€-type orbital hybridization and reactive oxygen quenching induced by Se-doping for Li-rich Mn-based oxide cathode. Energy Storage Materials, 2022, 51, 671-682.	18.0	15
537	A high pressure observation of the Mg2NiH4–H system. Journal of Alloys and Compounds, 2000, 307, L1-L5.	5.5	14
538	Organic Electrodes: Organic Electrode Materials for Rechargeable Lithium Batteries (Adv. Energy) Tj ETQq0 0 0 rg	BT /Qverlc 19.5	ck_{14} 10 Tf 50

539	An Alternative to Lithium Metal Anodes: Nonâ€dendritic and Highly Reversible Sodium Metal Anodes for Li–Na Hybrid Batteries. Angewandte Chemie, 2018, 130, 15012-15016.	2.0	14
540	Layered H _{0.68} Ti _{1.83} O ₄ /reduced graphene oxide nanosheets as a novel cathode for rechargeable magnesium batteries. Chemical Communications, 2019, 55, 14578-14581.	4.1	14

#	Article	IF	CITATIONS
541	Nanoporous Catalysts for Rechargeable Li-air Batteries. Acta Chimica Sinica, 2013, 71, 473.	1.4	14
542	UV-Cured Semi-Interpenetrating polymer networks of solid electrolytes for rechargeable lithium metal batteries. Chemical Engineering Journal, 2022, 437, 135329.	12.7	14
543	Edge Engineering of <scp>MoS₂</scp> Nanoribbons as High Performance Electrode Material for Naâ€ion Battery: A Firstâ€Principle Study. Chinese Journal of Chemistry, 2017, 35, 896-902.	4.9	13
544	Proton Intercalation/Deâ€intercalation Dynamics in Vanadium Oxides for Aqueous Aluminum Electrochemical Cells. Angewandte Chemie, 2020, 132, 3072-3076.	2.0	13
545	Nanograined copper foil as a high-performance collector for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 831, 154801.	5.5	13
546	1,4,5,8-Naphthalenetetracarboxylic dianhydride grafted phthalocyanine macromolecules as an anode material for lithium ion batteries. Nanoscale Advances, 2021, 3, 3199-3215.	4.6	13
547	Enhanced adsorption of carbonyl molecules on graphene via π-Li-π interaction: a first-principle study. Science China Materials, 2017, 60, 674-680.	6.3	12
548	Metal-oxygen bonds: Stabilizing the intermediate species towards practical Li-air batteries. Electrochimica Acta, 2018, 259, 313-320.	5.2	12
549	Revisiting the Hitherto Elusive Cyclohexanehexone Molecule: Bulk Synthesis, Mass Spectrometry, and Theoretical Studies. Journal of Physical Chemistry Letters, 2021, 12, 9848-9852.	4.6	12
550	A telluride-doped porous carbon as highly efficient bifunctional catalyst for rechargeable Zn-air batteries. Electrochimica Acta, 2022, 404, 139606.	5.2	12
551	Li _{2â^'<i>x</i>} Fe _{1â^'<i>x</i>} Al _{<i>x</i>} SiO ₄ /C Nanocomposites Cathodes for Lithiumâ€lon Batteries. Energy Technology, 2014, 2, 355-361.	3.8	11
552	A 3D Hydroxylated MXene/Carbon Nanotubes Composite as a Scaffold for Dendriteâ€Free Sodiumâ€Metal Electrodes. Angewandte Chemie, 2020, 132, 16848.	2.0	11
553	An Ionic Liquid Electrolyte with Enhanced Li ⁺ Transport Ability Enables Stable Li Deposition for Highâ€Performance Liâ€O ₂ Batteries. Angewandte Chemie, 2021, 133, 26177-26184	.2.0	11
554	First-principles Study on Metal-doped LiNi _{0.5} Mn _{1.5} O ₄ as a Cathode Material for Rechargeable Li-Ion Batteries. Acta Chimica Sinica, 2013, 71, 1029.	1.4	11
555	Advance and Prospect of Functional Materials for Sodium Ion Batteries. Acta Chimica Sinica, 2017, 75, 154.	1.4	11
556	Mitigating the Jahn-Teller distortion driven by the spin-orbit coupling of lithium manganate cathode. Journal of Energy Chemistry, 2022, 72, 379-387.	12.9	11
557	Synthesis, characterization and hydrogen storage capacity of MS2 (M = Mo, Ti) nanotubes. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2006, 1, 260-263.	0.4	10
558	Na-X zeolite templated and sulfur-impregnated porous carbon as the cathode for a high-performance Li–S battery. RSC Advances, 2016, 6, 9117-9123.	3.6	10

#	Article	IF	CITATIONS
559	Aromaticity/Antiaromaticity Effect on Activity of Transition Metal Macrocyclic Complexes towards Electrocatalytic Oxygen Reduction. ChemSusChem, 2021, 14, 1835-1839.	6.8	10
560	A free-sealed high-voltage aqueous polymeric sodium battery enabling operation at â^25°C. Cell Reports Physical Science, 2022, 3, 100805.	5.6	10
561	A soil/Vulcan XC-72 hybrid as a highly-effective catalytic cathode for rechargeable Li–O2batteries. Inorganic Chemistry Frontiers, 2015, 2, 1006-1010.	6.0	9
562	Room-temperature rechargeable Na–SO ₂ batteries containing a gel-polymer electrolyte. Chemical Communications, 2018, 54, 5315-5318.	4.1	9
563	A Universal Graphene Quantum Dot Tethering Design Strategy to Synthesize Singleâ€Atom Catalysts. Angewandte Chemie, 2020, 132, 22069-22073.	2.0	9
564	Charge Storage Mechanism and Structural Evolution of Viologen Crystals as the Cathode of Lithium Batteries. Angewandte Chemie, 2020, 132, 11630-11636.	2.0	9
565	Bifunctional Effects of Cation Additive on Naâ€O ₂ Batteries. Angewandte Chemie, 2021, 133, 3242-3248.	2.0	9
566	A phthalocyanine-grafted MA–VA framework polymer as a high performance anode material for lithium/sodium-ion batteries. Dalton Transactions, 2021, 50, 9858-9870.	3.3	9
567	Regulating Electrocatalytic Oxygen Reduction Activity of a Metal Coordination Polymer via d–΀ Conjugation. Angewandte Chemie, 2021, 133, 17074-17078.	2.0	9
568	A potential anchoring material for lithium–sulfur batteries: Monolayer PtTe sheet. Applied Surface Science, 2022, 572, 151378.	6.1	9
569	Molecular sieve based Janus separators for Li-ions redistribution to enable stable lithium deposition. Nano Research, 2022, 15, 5143-5152.	10.4	9
570	Thioglycolic Acid-assisted Solvothermal Synthesis of CuInS2with Controllable Microstructures. Chemistry Letters, 2006, 35, 1050-1051.	1.3	8
571	A Quantumâ€Chemical Study on Understanding the Dehydrogenation Mechanisms of Metal (Na, K, or Mg) Cation Substitution in Lithium Amide Nanoclusters. Advanced Functional Materials, 2010, 20, 1894-1902.	14.9	8
572	Hydrogen Releasing of Lithium Amidoborane-LiNH ₂ BH ₃ . Materials Transactions, 2011, 52, 651-653.	1.2	8
573	Quinones as Electrode Materials for Rechargeable Lithium Batteries. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 1593-1603.	4.9	8
574	Na–CO batteries: devices to trap CO. Chemical Communications, 2017, 53, 9312-9315.	4.1	8
575	KTiOPO4 as a novel anode material for sodium-ion batteries. Journal of Alloys and Compounds, 2018, 754, 147-152.	5.5	8
576	Plasma-processed homogeneous magnesium hydride/carbon nanocomposites for highly stable lithium storage. Nano Research, 2018, 11, 2724-2732.	10.4	8

#	Article	IF	CITATIONS
577	Recent Progress on Catalysts for the Positive Electrode of Aprotic Lithium-Oxygen Batteries â€. Inorganics, 2019, 7, 69.	2.7	8
578	Graphite-like structure of disordered polynaphthalene hard carbon anode derived from the carbonization of perylene-3,4,9,10-tetracarboxylic dianhydride for fast-charging lithium-ion batteries. New Journal of Chemistry, 2021, 45, 16658-16669.	2.8	8
579	Xylitol-assisted ball milling of graphite to prepare long-cycle and high-capacity graphene nanosheet as lithium-ion anode materials. Journal of Materials Science, 2021, 56, 18200-18209.	3.7	8
580	Resumption of the Discharged Li-AgVO3 Primary Batteries for Rechargeable Li-O2 Batteries. Acta Chimica Sinica, 2017, 75, 199.	1.4	8
581	Polypyrrole-cobalt-carbon nanocomposites as efficient counter electrode materials for dye-sensitized solar cells. Science China Chemistry, 2014, 57, 1559-1563.	8.2	7
582	<i>In-situ</i> Preparation of Na ₂ Ti ₃ O ₇ Nanosheets as High-Performance Anodes for Sodium Ion Batteries. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 349-355.	4.9	7
583	Theoretical study on lithiation mechanism of benzoquinone-based macrocyclic compounds as cathode for lithium-ion batteries. Physical Chemistry Chemical Physics, 2019, 21, 11004-11010.	2.8	7
584	Preface to the Special Issue of <i>ChemSusChem</i> on Organic Batteries. ChemSusChem, 2020, 13, 2107-2109.	6.8	7
585	Virtual Special Issue of Recent Research Advances in China: Batteries and Energy Storage. Energy & Fuels, 2021, 35, 10945-10948.	5.1	7
586	Secondary battery systems for energy storage in smart grids. Chinese Science Bulletin, 2012, 57, 2545-2560.	0.7	7
587	Solvo/Hydrothermal Preparation of MnO <i>_x</i> @rGO Nanocomposites for Electrocatalytic Oxygen Reduction. Acta Chimica Sinica, 2014, 72, 920.	1.4	7
588	Toward accurate and efficient dynamic computational strategy for heterogeneous catalysis: Temperature-dependent thermodynamics and kinetics for the chemisorbed on-surface CO. Chinese Chemical Letters, 2022, 33, 4936-4942.	9.0	7
589	Soil as an inexhaustible and high-performance anode material for Li-ion batteries. Chemical Communications, 2015, 51, 15827-15830.	4.1	6
590	Elucidating dz2 orbital selective catalytic activity in brownmillerite Ca2Mn2O5. AIP Advances, 2016, 6, 095210.	1.3	6
591	Spindle-Like LiMnPO ₄ Assembled by Nanorods with Different Crystallographic Orientations as the Cathode of Lithium-Ion Batteries. Science of Advanced Materials, 2013, 5, 1676-1685.	0.7	6
592	Organic conjugated carbonyl compounds as electrode materials for lithium-ion batteries. Chinese Science Bulletin, 2013, 58, 3132-3139.	0.7	6
593	Application of Triphenylamine-Based Sensitizers with Two Carboxylic Acid Groups to Dye-Sensitized Solar Cells. Acta Physico-chimica Sinica, 2008, 24, 1950-1956.	0.6	5
594	Special topic on electrochemical power sources. Science China Chemistry, 2017, 60, 1481-1482.	8.2	5

#	Article	IF	CITATIONS
595	Rechargeable K O 2 Batteries with a KSn Anode and a Carboxyl ontaining Carbon Nanotube Cathode Catalyst. Angewandte Chemie, 2021, 133, 9626-9631.	2.0	5
596	Insights into the Ionic Conduction Mechanism of Quasiâ€Solid Polymer Electrolytes through Multispectral Characterization. Angewandte Chemie, 2021, 133, 22854-22859.	2.0	5
597	Low-temperature catalytic preparation of multi-wall MoS2 nanotubes. Science in China Series B: Chemistry, 2003, , 191.	0.8	4
598	Graphene composite 3,4,9,10-perylenetetracarboxylic sodium salts with a honeycomb structure as a high performance anode material for lithium ion batteries. Nanoscale Advances, 2021, 3, 4561-4571.	4.6	4
599	Molecularly Compensated Preâ€Metallation Strategy for Metalâ€Ion Batteries and Capacitors. Angewandte Chemie, 2021, 133, 17207-17216.	2.0	4
600	Ultrafine RuO2 nanoparticles/MWCNTs cathodes for rechargeable Na-CO2 batteries with accelerated kinetics of Na2CO3 decomposition. Chinese Chemical Letters, 2023, 34, 107405.	9.0	4
601	Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of <i>α</i> -MnO ₂ Nanotubes. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 1421-1428.	4.9	3
602	Improved Dehydrogenation Performance of Li-B-N-H by Doped NiO. Metals, 2018, 8, 258.	2.3	3
603	A graphene@framework polymer derived from addition polymerization of phthalocyanine/dicarboxaldehyde as a negative material for lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 7291-7305.	5.9	3
604	准固æ€é",离åç"µæ±æ£æžœæ−™æŸ±[5]醌的ç"ç©¶. Scientia Sinica Chimica, 2014, 44, 1175-1180.	0.4	3
605	Mg micro/nanoscale materials with sphere-like morphologies: Size-controlled synthesis and characterization. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 35-39.	0.2	2
606	Batteries & Supercaps: Making a Better Tomorrow. Batteries and Supercaps, 2019, 2, 401-402.	4.7	2
607	Graphene in-situ composite metal phthalocyanines (TN-MPc@GN, M=Fe, Co, Ni) with improved performance as anode materials for lithium ion batteries. New Journal of Chemistry, 0, , .	2.8	2
608	Phthalocyanine polymer grafted graphene oxide matrix as high-performance anode material for lithium-ion batteries. Sustainable Energy and Fuels, 2022, 6, 3740-3755.	4.9	2
609	Template-Synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 Nanotubes as the Cathode Materials of Lithium Ion Batteries ChemInform, 2005, 36, no.	0.0	1
610	Metal-Complex Hydrides for Hydrogen-Storage Application. Materials Science Forum, 2005, 475-479, 2437-2440.	0.3	1
611	Turning optical switching properties of Mg-Y films in electrochemical process by tailoring composition. Materials Research Express, 2018, 5, 036419.	1.6	1
612	Tuning Interphase Chemistry to Stabilize Highâ€Voltage LiCoO2 Cathode Material via Spinel Coating. Angewandte Chemie, 0, , .	2.0	1

#	Article	IF	CITATIONS
613	Thermally Stable Silicate Nanotubes ChemInform, 2004, 35, no.	0.0	0
614	NANOSTRUCTURED ELECTRODE MATERIALS FOR LITHIUM BATTERIES. , 2011, , 85-126.		0
615	Preface to Special Issue on Electrochemical Energy Storage and Conversion. Journal of Energy Chemistry, 2014, 23, i.	12.9	0
616	Materials chemistry at Nankai University: A special issue dedicated to the 100th anniversary of Nankai University. Science China Materials, 2019, 62, 1505-1506.	6.3	0
617	Special issue dedicated to the 100th anniversary of Nankai University. Science China Chemistry, 2019, 62, 521-524.	8.2	0
618	Materials Science at Nankai: A Special Issue Dedicated to the 100th Anniversary of Nankai University. Advanced Materials, 2020, 32, e1907314.	21.0	0